
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

\9 i#
N 

THESIS 

COSTS AND BENEFITS OF SOFTWARE PROCESS 
IMPROVEMENT 

By 

Karen D. Prenger 

December, 1997 

Thesis Advisor: James Emery 
Second Reader: Elizabeth Gramoy 

Approved for public release; distribution is unlimited. 

OTIC *UAJuri'l INSPECTED 6 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing 
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate 
for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Ariington. VA 22202-4302 and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1.    AGENCY USE ONLY (Leave blank) 2.    REPORT 
DATE 

December 1997 

3.    REPORT TYPE AND DATES COVERED 
Master's Thesis 

4.    TITLE AND SUBTITLE 
COSTS     AND     BENEFITS     OF     SOFTWARE     PROCESS 
IMPROVEMENT 

6.    AUTHOR 
Prenger, Karen D. 

5. FUNDING NUMBERS 

7.   PERFORMING ORGANIZATION NAME AND ADDRESS 

Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9.    SPONSOR/MONITORING    AGENCY    NAME(S)    AND 
ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA 93943-5000 

10.        SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department 
of Defense of the U.S. Government. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited 

12b.DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

There are numerous problems in DoD software development projects. The ad hoc practices used in the military services and 
in industry have resulted in unpredictable costs and schedules and low-quality products. This thesis proposes that one solution to 
these problems is to integrate Software Process Improvement (SPI) activities based on a proven model into software development 
projects. Both a formal and an informal approach to SPI will be discussed. The thesis will also describe not only the problems 
encountered in most software development projects, but also the activities defined in these SPI approaches that are designed to solve 
these problems. A case study of a military project that has spent several years implementing SPI activities based on Software 
Engineering Institute's (SEI) Capability Maturity Model (CMM) is presented. The SPI activities were implemented in an effort to 
deliver a high quality product with high reliability while maintaining a high level of control of costs and schedule. This project has 
succeeded in its goals and the costs and benefits of the project's efforts will be presented. 

14.    SUBJECT TERMS 
Software Process Improvement, Software Engineering Institute's Capability 
Maturity Model, SmartNet Project, Rapid Application Development 

15. NUMBER OF PAGES 

110 

16. PRICE CODE 

17.   SECURITY 
CLASSIFICATION   OF 
REPORT 
UNCLASSIFIED 

18.  SECURITY 
CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19.  SECURITY 
CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20.  LIMITATION OF 
ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89) 

Prescribed by ANSI Std 239-18 





Approved for public release; distribution is unlimited 

COSTS AND BENEFITS OF SOFTWARE PROCESS IMPROVEMENT 

Karen D. Prenger 
B.S., National University, 1983 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN SOFTWARE ENGINEERING 

from the 

NAVAL POSTGRADUATE SCHOOL 
December 1997 

Author: 

Approved by: 

<H<QAJ^  b.  (PA M^ 
Karen D. Preng< 

James Emery, Thesis Advisor 

lizabeth Graffia&_Co- Advisor 

(L 
Dan Boger, Acting Chairman, Departmen/o/Computer Science 

Ul 



IV 



ABSTRACT 

There are numerous problems in DoD software development projects. The ad hoc 

practices used in the military services and in industry have resulted in unpredictable costs 

and schedules and low-quality products. This thesis proposes that one solution to these 

problems is to integrate Software Process Improvement (SPI) activities based on a proven 

model into software development projects. Both a formal and an informal approach to 

SPI will be discussed. The thesis will also describe not only the problems encountered in 

most software development projects, but also the activities defined in these SPI 

approaches that are designed to solve these problems. A case study of a military project 

that has spent several years implementing SPI activities based on Software Engineering 

Institute's (SEI) Capability Maturity Model (CMM) is presented. The SPI activities were 

implemented in an effort to deliver a high quality product with high reliability while 

maintaining a high level of control of costs and schedule. This project has succeeded in 

its goals and the costs and benefits of the project's efforts will be presented. 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION 1 

II. ISSUES INVOLVED IN SOFTWARE DEVELOPMENT 5 

m.       WHY IS SOFTWARE DEVELOPMENT SO PROBLEMATIC? 9 

IV. AN ANALYSIS OF TWO DIFFERENT APPROACHES TO SOFTWARE 

DEVELOPMENT 13 

V. CAN PROCESSES SOLVE THE PROBLEMS OF SOFTWARE 

DEVELOPMENT? 19 

VI. SOFTWARE PROCESS IMPROVEMENT EFFORTS IN INDUSTRY 21 

VII. SOFTWARE PROCESS IMPROVEMENT EFFORT AT SPACE AND NAVAL 

WARFARE SYSTEMS CENTER, SAN DIEGO 25 

VIII. DESCRIPTION OF THE SMARTNET PROJECT 27 

LX.      SOFTWARE PROCESS IMPROVEMENT ACTIVITIES IMPLEMENTED ON 

SMARTNET 31 

X. ANALYSIS OF COSTS OF SOFTWARE PROCESS IMPROVEMENT 

ACTIVITIES IMPLEMENTED 37 

XI. ANALYSIS OF BENEFITS OF SOFTWARE PROCESS IMPROVEMENT 

ACTIVITIES IMPLEMENTED : 41 

XII. CONCLUSIONS 49 

APPENDLXA. THE SOFTWARE CHANGE REQUEST 51 

APPENDIX B.   ACTUAL VERSUS ESTIMATED LEVEL OF EFFORT 

REPORT : 53 

APPENDLX C. CLOSED ACTION ITEMS/SOFTWARE CHANGE REQUESTS 

REPORT 55 

APPENDLX D. SOFTWARE CHANGE REQUESTS/ACTION ITEMS CLOSED 

BETWEEN <START/END DATE> 57 

APPENDIXE. TEAM POWER REPORT 63 

Vll 



APPENDIX F. SOFTWARE CHANGE REQUEST METRICS FOR PROBLEM 

SOFTWARE CHANGE REQUESTS 65 

APPENDIX G. VERSION DESCRIPTION DOCUMENT 85 

LIST OF REFERENCES 91 

BIBLIOGRAPHY 93 

INITIAL DISTRIBUTION LIST 95 

vm 



LIST OF FIGURES 

Figure 1. SmartNet Software Change Request Level of Effort 45 

Figure 2. Estimated Costs of Fixing Software Change Requests 46 

Figure 3. SmartNet Software Change Requests 47 

IX 





LIST OF TABLES 

Table 1. Processes Designed to Solve Software Development Problems 20 

Table 2. Summary of Costs Incurred Implementing SPI Activities 39 

Table 3. SmartNet Software Release Dates.... 42 

Table 4. Defect Rates of SmartNet Software Versions 48 

XI 



XU 



ACKNOWLEDGMENT 

I would especially like to thank my thesis advisors, Professor James Emery for his 

guidance, and Elizabeth Gramoy for her help and encouragement. I would like to thank 

the dedicated people that work in the Software Engineering Process Office (SEPO) and 

as Software Process Improvement (SPI) agents at Space and Naval Warfare Systems 

Center, San Diego (SSC-SD) for helping with reference material and providing ideas. A 

special thanks also goes to the SmartNet team who went out of their way to provide 

reports and information for the case study that is a major part of this thesis. 

XUl 



XIV 



I. INTRODUCTION 

Today's major defense systems depend largely on the quality of complex and 

increasingly costly software.  Many major weapon systems cannot operate if the software 

fails to function as required. Because software errors can cause a system to fail, possibly 

with life-threatening consequences, software-intensive systems need to be thoroughly 

tested before production. Since the early 1970s, the General Accounting Office (GAO) 

has reported problems in operational test and evaluation of defense acquisition programs. 

Senior DoD officials, as well as Members of the Congress, are concerned that many of 

these problems continue today, particularly in software-intensive systems. [Ref. 1] 

DoD software costs totaled over $30 billion a year in 1993 (estimated to be $42 

billion by 1995), of which about two-thirds was for maintaining, upgrading, and 

modifying operational systems already in production. In contrast, the cost of computer 

hardware components that are integral to weapon systems and other critical military and 

intelligence systems are expected to remain stable at about $6 billion annually between 

1990 and 1995. [Ref. 1] 

According to a 1992 report by the Secretary of the Air Force, virtually all 

software-intensive defense systems suffer from difficulties in achieving cost, schedule, 

and performance objectives. It has been repeatedly demonstrated during operation testing 

and, in some cases, during operations in the field, that these systems do not meet user 

requirements. Most of these software problems could have been identified and addressed 

during earlier development testing. [Ref. 1] 

In December 1992, GAO reported that DoD's mission-critical computer systems 

continued to have significant software problems due in part to a lack of management 

attention, ill-defined requirements, and inadequate testing. [Ref. 1] 

A 1979 GAO report states: [Ref. 2] 

- > 50% of contracts had cost overruns 

- > 60% of contracts had schedule overruns 

- > 45% of software could not be used 

- > 29% of software was never delivered 

- > 19% of software had to be reworked 



- ~ 3% of software had to be modified 

- < 2% of software was usable as delivered 

An unpublished review of 17 major DoD software contracts found that the 

average 28-month schedule was missed by 20 months. One four-year project was not 

delivered for seven years; no project was on time. Deployment of the Bl bomber was 

delayed by a software problem, and the $58 billion A12 aircraft program was canceled 

partly for the same reason. [Ref. 3] 

One recent GAO report summarized more than 20 GAO case studies involving 

software or software-related problems in the military and concluded, "The understanding 

of software as a product and of software development as a process is not keeping pace 

with the growing complexity and software dependence of existing and emerging mission- 

critical systems." [Ref. 3] 

The problems in DoD software development projects are numerous. The issues 

involved and some of the most common problems encountered in software development 

will be discussed in the next few sections of the thesis. I propose that one solution to 

these problems is to integrate Software Process Improvement (SPI) activities based on a 

proven model into software development projects. The model that is used at Space and 

Naval Warfare Systems Center San Diego (SSC-SD) is the Software Engineering 

Institute's (SEI) Capability Maturity Model (CMM). A less formal approach, called 

Rapid Application Development (RAD) will also be discussed as a solution to improving 

small software projects. This thesis also contains a case study of a project at SSC-SD 

using the CMM. 

Based on a consensus of many experts and much literature in this field, an 

organization's chance for success depends first on having an exceptional manager and an 

effective development team (PEOPLE). Secondly, it depends on its effective use of 

TECHNOLOGY, and finally, on its PROCESS maturity. [Ref. 4]   In a software 

organization: 

PEOPLE refers to the attributes of the personnel responsible for managing, 

performing, or overseeing the development and maintenance of their software products. 



Management commitment and ability to hire and retain competent people are the most 

crucial elements in predicting an organization's success. 

TECHNOLOGY refers to the tools, languages, information, applications, and 

environments needed to develop and maintain software. 

PROCESS refers to the way people approach software development and 

maintenance. Process is a particular method of doing something, generally involving a 

number of steps or operations. A software process consists of methods, activities, plans, 

practices, procedures, and steps used to produce and maintain software.   It is the fiber 

that connects people to technology and allows them to effectively use their technology. 

Process maturity is how well a process is defined, managed, measured, and controlled, 

and how effective it is. Software process maturity is an indicator of software 

development capability. The quality of a software system is governed by the quality of 

the process used to develop it. 

Of the three, talented people are, by far, the most important element of any 

software organization. But organizations must strive for balance between good software 

engineering processes; the proper, although not necessarily the most current technology; 

and competent management of their workforce. [Ref. 4] 





II. ISSUES INVOLVED IN SOFTWARE DEVELOPMENT 

According to [Ref. 5], a system is defined as "an integrated composite of people, 

products, and processes that provide a capability to satisfy a stated need or objective." 

The elements making up the system are a database, documentation, people, procedures, 

software, firmware, and hardware. Some of the software development issues are: 

Selecting an organization and team structure.   As stated in [Ref. 2], the purpose 

of an organizational structure is to focus the efforts of many to a selected goal. The 

program/project manager selects the optimum project structure for the project 

environment. That structure could be project, matrix, ox functional. The project 

structure keeps people involved through the life of the project. It provides more 

continuity and gives the project manager maximum control. The matrix organization 

takes people from other projects/divisions within the organization to form a new team 

that exists as long as needed to get the project done. The advantages of the matrix 

organization are that it provides flexibility in staffing and the project manager does not 

have to manage the same people too long. The disadvantages are that there could be 

problems allocating resources and coordinating efforts among changing team members. 

Another disadvantage is the employee could end up with two supervisors. In the 

functional structure, each team is assigned one or more functional tasks (such as writing 

the user interface) and each team has a specific structure. An advantage is that it is easier 

to stay up to speed technically in a functional structure; the disadvantage is that it is 

difficult to coordinate among multiple functions. Also, employees resist staying on the 

project too long. 

As described in [Ref. 2], there are three types of team structures: 

- Democratic decentralized (DD): This team has no permanent leader. Decisions 

are made by group consensus and communications are horizontal. People that work on 

this type of team tend to have a high morale and high job satisfaction. This team is 

communication intensive. 



- Controlled decentralized (CD): This team has a defined leader who coordinates 

specific tasks and has secondary leaders who have responsibility for subtasks. This team 

is more structured than the DD. 

- Controlled centralized (CC): a team leader manages top-level problem solving 

and internal team coordination. This team is very structured. 

The best team structure depends on project factors such as difficulty of the 

problem, size of the program, team lifetime, degree to which the problem can be 

modularized, required quality and reliability, rigidity of the delivery date, and degree of 

communication required for the project. The DD structure is good for small (five people 

or fewer) projects due to the time needed for a high level of communication. This 

structure is also good for very difficult projects that may need more time for creative 

ideas and problem solving to occur. The CD structure is good for larger projects that are 

more modular, require high reliability, and have a shorter schedule to meet. The CC 

structure is also good for larger, less difficult, highly modular projects. The CC structure 

is desirable when there are strict time constraints. 

Staffing the project. Staffing the project is extremely important. The people 

selected to work on a project can make the project a success or a failure. It takes time to 

evaluate applications and interview personnel. Certainly, it would be desirable to put all 

the top software engineers together for the best possible team. However, that is not 

always feasible. Each organization has junior people who need training and mentoring. 

To put them all together on a software development project without senior technical staff 

to help could be a disaster for the project. Ideally, the team would be a mixture of new, 

inexperienced people and seasoned software developers. The developers with experience 

can help and mentor the less experienced people on the team. Training should be 

provided as needed. 

Sometimes it might be difficult to attract the best people for the job. A project 

manager is in competition with other projects within the organization for the best people. 

Assuming the pay, benefits, and location are the same throughout the organization, one 

way to attract the best people is to better yourself as a manager. [Ref. 2] 



Another important aspect to consider after the team has been selected and staffed 

is to make sure the manager/technical lead solves the personnel problems as they occur 

without letting them hurt the project/team morale. For example, if the manager keeps a 

poor performer on the team, eventually the other members will lose incentive to work and 

it hurts the manager's reputation. 

Selecting a software model/methodology.   A methodology refers to the standards 

and procedures that affect the planning, analysis, design, development, implementation, 

operation, support, and disposal of a software-intensive system. The software life cycle 

management methodologies include evolutionary, incremental, waterfall, spiral, or any 

other tailored method applicable to the environment. A methodology should be chosen 

based on the nature of the program, software domain, the methods and tools used, and the 

controls and deliverables required. [Ref. 5] 

Choosing an appropriate life cycle methodology is not always an easy task. Each 

methodology has advantages and disadvantages. Current guidance for MIS development 

is that the incremental or evolutionary methods constitute more effective risk 

management and provide earlier satisfaction of user requirements. 

The evolutionary life cycle is an alternative strategy for systems where future 

requirement refinements are anticipated (i.e., the requirements evolve over time) or where 

there is medium to high technical risk. This method involves building prototypes for the 

user to test and refine the requirements. This is similar to the spiral model in that the 

development process is iterative. This method is well-suited for high technology 

software-intensive systems where requirements beyond the core capability can generally 

be identified. 

The incremental life cycle management method involves developing a 

software-intensive product in a series of increments of increasing functional capability. 

The requirements of the system are identified at the beginning of the project. Benefits of 

this methodology are: 

- Risk is spread across several smaller increments instead of one large 

development. 

- Requirements are stabilized during the production of a given increment. 



-    Understanding the requirements for later increments becomes clearer based on 

the user's ability to gain a working knowledge of earlier increments. 

The incremental method is most appropriate for low-to medium-risk programs. 

The waterfall model (also referred to as "Grand Design") was the first to 

formalize a framework for software development phases, and placed emphasis on up- 

front requirements and design activities and on producing documentation during early 

phases. The major drawback is its inherent sequential nature. Any attempt to go back 

two or more phases to correct a problem would result in major increases in cost and 

schedule. It is not suited for modern development techniques such as prototyping and 

automatic code generation. It also is not suited for unprecedented systems because it 

inhibits flexibility. 

The spiral method provides a risk-reducing approach to the software life cycle. 

It combines basic waterfall building block and evolutionary/incremental prototype 

approaches to software development. The building block activities include the 

preliminary, detailed, and critical design reviews, code, unit test, integration and test, and 

qualification test. The advantages of the spiral model are its emphasis on procedures, 

such as risk analysis, and its adaptability to different life cycle approaches. 

Selecting/defining the processes that will be used by the team.   The project 

manager should use processes to perform the major functions of software development 

(planning, requirements analysis, software design, coding, unit testing, unit integration 

and testing, configuration management, product evaluation, quality assurance).   One of 

the more formal approaches to processes is to implement policies and processes based on 

an accepted model. Examples would be the CMM, and the ISO 9000 model. The models 

can be tailored to be as formal or informal as the project manager desires. 

Selecting tools to be used by the team. This is an important part of the planning 

phase of the project. The tools refers to the hardware and software used by the team to 

design, develop, debug, and document the software project, as well as perform 

configuration management and maintenance functions. The tools selected need to be 

functional, easily acquired, affordable, and easy to learn how to use. 



III. WHY IS SOFTWARE DEVELOPMENT SO PROBLEMATIC? 

In light of all the issues just described with software development, it comes as no 

surprise that there are so many problems encountered when developing software. The 

Department of the Air Force states in [Ref. 5] that overwhelming evidence indicates that 

software programs fail for the following common reasons: 

Software's inherent complexity. Software is risky because it is hard to build. 

The complexity of hardware pales in comparison with the complexity of software. 

Complexity plagues us because we often fail to take a disciplined approach to design and 

create more complexity than needed. Software complexity should be kept to a minimum. 

Highly complex solutions are destined to be high cost maintenance nightmares! The 

more complex the software, the more difficult it is to understand and the greater the 

chance for defects to propagate throughout the code. The cost of making changes and 

correcting defects often soars beyond acceptable levels, resulting in programs being 

abandoned after exorbitant expenditures of unrecoverable resources. 

Our inability to estimate cost, schedule, and size. The fundamental reason 

software-intensive development projects overrun cost and schedule, with resulting quality 

and performance shortfalls, is our inability to estimate. No matter how smooth our 

development process, how efficient our tools, or how smart our designers, our predictions 

of cost and schedule are frequently out of sync with what actually occurs in the 

production of a software product. We often forget that software development involves 

much more than simply writing code. For example, we are still learning that software 

maintenance consumes from 60% to 80% of our software dollars. We also do not 

account for the amount of scrap or rework of code involved when a developer has an ad 

hoc, chaotic development process, the cost of which Boehm claims to be about 44% of 

every dollar spent. Predicting the size and complexity of the software to be built is at the 

heart of our estimation deficiencies. When a software development is precedented (i.e., a 

similar system has been developed), size and complexity projections (and thus cost and 

schedule) are usually more accurate. In unprecedented systems, however, our ability to 

estimate the intangible is low. 



Programs tend to get in trouble in small, progressively compounding increments. 

When the product is late (and/or over cost), we apply management pressure to reduce the 

slack between our projected delivery date and the illusive real one. This aggravates the 

problem into a catch-22 situation. With inadequate resource and schedule estimates, the 

time required to build-quality-in may be insufficient. To meet schedule and keep down 

cost, the next easiest thing to cut is testing. Before we realize it, a late, over-cost program 

evolves into an unreliable one. When a cost/schedule disaster is discovered, developers 

often try to protect their contract through alternative proposals that attempt to deliver less 

for the same price. This leads to down-scoping, or eliminating requirements, in an 

attempt to stay within initial projections. This is a very serious situation because it means 

resources have been expended, often exhausted, and the user does not get the system for 

which they paid. There are many cases of programs that have been canceled without the 

delivery of a single operational product after years of schedule and cost overruns. 

There is also a problem with optimistic estimates. In DoD projects are subject to 

spending and budgeting scrutiny from the Congress, the press, and upper management. 

Under pressure, contractors and military managers often make overly optimistic estimates 

about how much the software will cost and how long it will take to produce. The 

pessimistic cost, schedule, and size estimates are often discarded and our projections are 

based on the best of all possible worlds. Risk is not managed and a management reserve 

or a worst-case scenario is not built into the cost and schedules for fear the program will 

not get funded or approved if more realistic figures are submitted. This increases the 

likelihood for shortcuts in the development of a product that was improperly funded and 

scheduled. 

Unstable Requirements. One big cause of software program failures, upon which 

all the reports and studies undeniably concur, is requirements instability. It is reasonable 

to expect that requirements of the software system are going to change because user 

needs change, and when building weapon systems, the world and threats can change. 

One way to prepare for the changes is to build software systems with an architecture that 

tolerates changing requirements without compromising design. Another way to handle 

the changes is to control how, and at what pace, inevitable requirements changes are 

10 



incorporated. If ad hoc, sporadic, or frequent modifications to requirements or their 

interpretation are inflicted on developers, changes in cost and schedule are a given. 

Sometimes what appear to be minor changes have dramatic side effects elsewhere in the 

software. If full (technical and effort) evaluation of change consequences are not 

included in the management process, the incremental incorporation of changed 

requirements can invalidate estimates of cost and schedule, diminishing product quality. 

One potential source of instability is inadequately stated requirements. Indefinite 

and undefined software requirements also lead to cost and schedule changes, which can 

continue even after the program enters development. Requirements definition and 

analysis is the most important task and is also very difficult for all sectors of industry and 

government. 

Misinterpretation of customer/user requirements is a major, if not the greatest, 

contributor to software failure. Not understanding customer's needs and/or inadequately 

stating requirements have often been the source of costly support problems and ultimate 

program failures. It is critical to get customer/user feedback throughout the project to 

determine whether perceived user needs have been correctly translated into software 

functionality. 

The main reason errors occur during requirements definition and analysis is lack 

of communication. During the requirements phase, the user tries to articulate a concept 

of the system functionality and performance required. The software engineer attempts to 

translate user definitions into models of information, control flow, operational behavior, 

and data content. The chances for misinterpretation are high. 

Data collected at Rome Laboratory indicate that over 50% of all software errors 

are "requirements errors." Requirements errors are more expensive to correct the further • 

they percolate throughout the life cycle. 

Poor Problem Solving/Decision Making by Management.   Management is, like 

all other activities in software development, a problem-solving exercise. It involves 

deciding what must be accomplished, how to do it, monitoring what is being performed, 

and evaluating what has occurred. The "what" is expressed in the Software Development 

11 



Plan. The "how" is an allocation of resources (people, lab facilities, computers, tools) to 

get the job done within schedule and budget. 

It's easy to forget that software development is dynamic and the original plans 

and estimates must be updated as requirements change or people leave the project. When 

change requests are submitted, it is a common mistake to fail to make a solid estimate of 

their impact on the cost and schedule estimates. It is also a common mistake to fail to 

demand additional payment for additional functionality, in an effort to please the 

customer. 

12 



IV. AN ANALYSIS OF TWO DIFFERENT APPROACHES TO SOFTWARE 

DEVELOPMENT 

A Formal Approach. The DoD established the SEI in 1984 to advance the 

practice of software engineering. The mission of the SEI is to provide leadership in 

advancing the state of the practice of software engineering to improve the quality of 

systems that depend on software. The mission of the SEFs Software Process Program is 

to provide leadership in assisting software organizations to develop and continuously 

improve their capability to identify, adopt, and use sound management and technical 

practices. [Ref. 3] 

The CMM for Software, developed by the SEI, is a framework that describes the 

key elements of an effective software process and provides guidance on how to establish 

and improve software development processes. The CMM describes an evolutionary 

improvement path for software organizations from an ad hoc, immature process to a 

mature, disciplined one. Five levels of maturity encompass this path. [Ref. 3] 

The CMM presents recommended practices in a number of Key Process Areas 

(KPAs) that have been shown to enhance software development and maintenance 

capability. When followed, these practices improve the ability of organizations to meet 

goals for cost, schedule, functionality, and product quality. [Ref. 3] 

The CMM contains the following KP As in maturity levels two and three: [Ref. 6] 

- Requirements management is used to establish a common understanding 

between the customer and the software project of the customer's requirements 

that will be addressed by the software project. 

- software project planning is used to establish reasonable plans for performing 

the software engineering and for managing the software project. 

- software project tracking and oversight is used to establish adequate visibility 

into actual progress so that management can take effective actions when the 

project deviates significantly from the plans. 

- software subcontract management is used to select qualified software 

subcontractors and manage them effectively. 

13 



- software quality assurance is used to provide management with appropriate 

visibility into the process being used by the software project and of the 

products being built. 

- software configuration management is used to establish and maintain the 

integrity of the products of the software project throughout the project's 

software life cycle. 

- organization process focus is used to establish the organizational 

responsibility for software process activities that improve the organization's 

overall software process capability. 

- organization process definition is used to develop and maintain a usable set of 

software process assets that improve process performance across the projects 

and provide a basis for cumulative, long-term benefits to the organization. 

- training program is used to develop the skills and knowledge of individuals so 

they can perform their roles effectively and efficiently. 

- integrated software management is used to integrate the software engineering 

and management activities into a coherent, defined software process that is 

tailored from the organization's standard software process and related process 

assets, which are described in Organization Process Definition. This tailoring 

is based on the business environment and technical needs of the project. 

- software product engineering is used to consistently perform a well-defined 

engineering process that integrates all the software engineering activities to 

produce correct, consistent software products effectively and efficiently. 

- intergroup coordination is used to establish a means for the software 

engineering group to participate actively with the other engineering groups so 

the project is better able to satisfy the customer's needs effectively and 

efficiently. 

- peer reviews is used to remove defects from the software work products early 

and efficiently. 

Correlation between project success and using the CMM was established in a 

study done by the Air Force Institute of Technology in September 1995. An excerpt from 

14 



their report says, "The aim of our research was to determine the nature of a correlation 

between the CMM rating and software development success. We were able to show 

correlation between CMM rating and the cost and schedule performance.... We observed 

improved cost and schedule performance with increasing process maturity. Specifically, 

the least mature organizations were likely to have difficulty adhering to cost and schedule 

baselines...the more mature organizations were likely to have on-baseline cost and 

schedule performance. This study has validated a correlation between project success and 

CMM ratings...". [Ref. 7] 

According to SEI, all of the military services have used ad hoc practices that have 

resulted in unpredictable costs and schedules and low-quality software products that do 

not meet users' needs. To address these problems, the services have taken different 

approaches to improving software development and test and evaluation and are in various 

stages of implementing those improvements. [Ref. 1] 

An Informal Approach. The most publicized software development failures are 

usually large projects either in military or industry. Less conspicuous are the far more 

numerous smaller projects that take too long, cost too much, and deliver crummy stuff. 

[Ref. 8] Dr. James Emery has been closely involved in a number of successful 

development projects. They all followed a similar approach to a process called Rapid 

Application Development (RAD): a small team, working about a year in a relatively 

informal environment, delivered a successful system that matched or exceeded 

management expectations. Although large projects need highly disciplined processes, 

this approach seems to work well for small to medium projects. [Ref 8, 9] 

The RAD process has three essential ingredients: 

- an adaptive methodology that can take advantage of the organizational 

learning that takes place during the development process 

- a productive set of development tools that makes it feasible to respond quickly 

to user feedback 

a small team of highly competent developers 

These ingredients were also described in the Introduction of this thesis and in 

[Ref. 4]. The basic idea of an adaptive methodology is to proceed through an iterative 

15 



process of design that eventually converges to an acceptable design. Each iteration is a 

working prototype. This prototype enables maximum communication between users and 

developers. It is much easier to comprehend how the system will work if you have a 

prototype to test as opposed to a design document to read. Eventually the evolving 

prototype becomes functional and robust enough to deploy as a production system. Once 

in production, revisions occur at a much slower pace. Initial planning of the tasks 

involved and the data model to be used is an important part of the adaptive process and 

will contribute greatly to the success of the project. 

A set of productive development tools is the second ingredient to this approach to 

software development. The tools must allow for a seamless migration through a series of 

prototypes to the eventual production system. Depending on the project environment, the 

tool set would consist of several complementary tools. Tools needed could include ones 

used to do project scheduling and planning, writing reports, generating forms, 

maintaining a database, and project accounting. 

A small team of highly talented developers is the third ingredient to this approach. 

If the project is small enough, most of the management and coordination overhead 

required on a large project can be avoided. Communication is not limited by hierarchical 

reporting relationships. Each member is encouraged to contribute his or her ideas in open 

dialogues. This type of team was described earlier in section two of this thesis. The high 

level of communication and opportunity for creativity are two of the greatest strengths of 

a small team. 

The Tradeoffs. Some of the drawbacks to implementing the formal approach to 

software development and software process improvement are described in the SmartNet 

case study found later in the thesis. It takes a lot of time and money to develop/tailor the 

organizational processes to be used by the projects and to train the employees on how to 

use these processes. Depending on the culture of the organization, getting management 

and the employees to "buy-in" to this process may or may not be easy. It also takes time 

(sometimes two to three years) to see the benefits of SPI activities. However, when faced 

with managing and organizing a large software development project, the formal processes 

provide management control over the development process and help guarantee a reliable, 

16 



high quality system, delivered on time. One way for new projects to realize cost savings 

is to leverage off of the lessons learned from projects that have more experience with SPI 

efforts. 

The informal RAD approach is not appropriate for large projects or projects where 

program reliability and maintainability (or lack of it) can endanger lives (such as in 

military weapons systems). A formal approach is needed in these instances. However, 

the RAD approach has certainly been successful on numerous small projects. 

The initial costs of implementing a RAD approach would be in software/hardware 

tools versus costs of implementing processes and training employees in the formal 

approach. 

An adaptive development process conflicts with the school of software engineers 

who prize well-defined up-front requirements and a disciplined, reproducible 

implementation process. They would no doubt find the adaptive development process 

undisciplined and sloppy, seriously lacking according to CMM criteria. With an adaptive 

process, one does not know up front exactly what the end result will be; instead, one 

arrives at the end result through a process of organizational learning and discovery. It is 

an uncertain and ambiguous venture. [Ref. 8] 

The adaptive development process approach is one way to plan for the changes in 

requirements that will inevitably occur during the development of a software system. The 

CMM attempts to plan for requirements changes by implementing a requirements 

management plan, a configuration management plan, and a project tracking and oversight 

plan. 

17 



18 



V. CAN PROCESSES SOLVE THE PROBLEMS OF SOFTWARE 

DEVELOPMENT? 

In this section I will look at how both the formal and informal processes described 

earlier can help solve the problems encountered on software development projects. 

As mentioned previously in Section III of this thesis, the main problems occurring 

in software development projects are due to: 

program complexity 

ability to estimate cost, schedule, and size 

unstable requirements 

poor problem solving/decision making by management 

Problems can also occur during the planning and staffing phases of the software project 

as described in Section II of this thesis. 

Table 1 lists the problems that can occur during the development of a software 

project and the process that was designed to help solve the problem for both the formal 

and informal approach to software development. 

The CMM key process areas that are listed in Table 1 were described earlier in 

Section II of the thesis. The informal approach to software development discussed 

earlier, RAD, attempts to solve the problems of software complexity and unstable 

requirements by implementing an adaptive methodology. This methodology uses 

prototypes to develop the requirements and keep a high level of communication between 

the developer and the users. Since it is expected that the requirements will change, this 

process plans for these changes. 

The RAD approach uses productive development tools to help solve the problems 

of estimating cost and schedule of the program. Time boxing refers to the practice of 

setting a time limit on an activity and using what you have developed so far when the 

time limit arrives. The tools can also aid in communication, which in the long run, 

enables better problem solving and decision making. Since this approach would be used 

on small to medium projects, a lot of the management problems would be eliminated due 

to the size of the project team. 

19 



Regardless of the methodology followed for software development, there will 

always be problems because industry and government are never satisfied with their 

technical achievements and are always pushing the technical envelope. 

PROBLEMS 
ENCOUNTERED 

CMM KPA DESIGNED 
TO SOLVE PROBLEM 

RAD APPROACH 
DESIGNED TO 
SOLVE PROBLEM 

Software Complexity Training, Peer Reviews, 
Software Product 
Engineering 

Prototyping versions of 
software 

Ability to estimate cost, 
schedule, size of program 

Risk Management, 
Configuration 
Management, Project 
Planning and Tracking 

Development Tools, 
Time Boxing 

Unstable requirements Requirements 
Management, 
Configuration 
Management, Peer 
Reviews, Product 
Engineering, Intergroup 
Coordination 

Prototyping versions of 
software 

Poor problem 
solving/decision making 

Project Planning and 
Tracking, Subcontract 
Management, Quality 
Assurance, Organization 
Process, Integrated 
Software Management, 
Requirements 
Management 

High level of 
communication due to 
small team, Development 
Tools 

Table 1. Processes Designed to Solve Software Development Problems 

20 



VI. SOFTWARE PROCESS IMPROVEMENT EFFORTS IN INDUSTRY 

The two companies I chose to describe in this section are both successful and 

leaders in their area of expertise. One company uses a formal approach to software 

development and the other has, in the past, used a very informal approach to software 

development. 

In July 1996, The Defense & Space Group, Boeing Space Transportation Systems 

(STS), achieved a Level 5 rating using the SEI CMM. This rating was the result found 

when a CMM-Based Appraisal for Internal Process Improvement (CBAIPI) was 

performed. This assessment took 10 days and required that evidence of 

institutionalization be provided for all software development activities. This significant 

achievement illustrates how customer interest has shifted from the technology focus of 

the 1960s and 1970s to the cost & schedule focus of the 1980s and finally to a process 

focus in the 1990s. Because the STS made process improvement a high priority, it 

demonstrated a high level of maturity in a formal assessment. [Ref. 10] 

As stated in [Ref. 11], Boeing feels the most tremendous benefit of high-maturity 

processes has been the Air Force's satisfaction and confidence in their organization - not 

because of their CMM rating, but because of the high quality of their product and 

predictable cost and schedule. The Air Force is Boeing's major customer. 

Another unexpected benefit of reaching a Level 5 was revealed when STS 

responded to an Air Force Software Development Capability Evaluation (SDCE) as part 

of a proposal preparation. Having CMM-based processes in place made it easier to 

respond to the difficult questions, and documentation supporting STS's claims was 

readily available for inclusion into the responses. [Ref. 11] 

The practices used by Boeing's STS organization are described here briefly and in 

detail in [Ref. 12]. An internal Software Engineering Process Group (SEPG) managed 

the organizational processes. Processes were updated as needed, training was developed 

and implemented, and emphasis was placed on a standard software development process. 

The metrics developed and reported included defect rates, training effectiveness, defect 

probability and other trend measures. Inspections were performed often since Boeing 

thinks that inspections are the single most effective method of reducing defects. In their 

21 



application, defects were reduced by 85%. Cycle time was reduced up to 50% and 

productivity was increased by 240%. The cost-to-benefit ratio of 1:7 was realized along 

with cost underruns. With numbers such as these, it is clear that the CMM has helped 

Boeing STS to become successful in many ways. 

In contrast, Microsoft, also a highly successful organization, has had a different 

approach to software development, which I will describe briefly here. Their approach is 

described in detail in [Ref. 13]. 

In the early days of Microsoft, the development process was more informal and 

there was less emphasis on schedule methodology and software architecture. Perhaps 

because of their lack of formal training, most of these developers did not follow the 

highly structured software development methodologies created by DoD and large 

corporate MIS departments. They often developed software without a formal 

specification or design. 

Microsoft relied heavily on individual superstars to develop software. Although 

this strategy worked well for them for awhile, they also encountered many problems, e.g., 

the superstars were hard to find; the people who were hired to maintain the code written 

by the superstars had difficulty understanding their code; the superstars did not always 

understand what the market wanted; and if too many of them were put together on a team, 

design decisions became a real problem. They did not always work well together. 

Because Microsoft was criticized in the mid-1980's for writing software which 

was technically excellent but difficult to understand and hard to use, Bill Gates began to 

hire marketing specialists to reorient Microsoft to focus on the customer. They also 

introduced a program management function to formalize design, coordinate product 

creation functions (development, testing, and user education), and perform support 

functions such as manual reviews, and competitive product evaluation. Teams of about a 

dozen software developers for each major project were established. Other major 

competitors of the time used much larger teams (often 100 or more). It is interesting to 

note that Microsoft's cost per line of code developed was significantly lower than the 

industry average, which was about $125 in 1989. 

22 



While Microsoft had become somewhat more formalized, the basic truth was that 

the developers still had ultimate control of the process and the code. The company had a 

deep underlying philosophy that people know what they are doing and will try to do the 

right thing. 

In 1984, a team of highly experienced developers was established to develop 

Word for Windows. The project was scheduled for completion by October 1985. They 

had numerous problems and in July 1986, the project manager left the project. A new 

team was formed. They ended up throwing away everything that had been done for the 

last year and started over. They were a year behind schedule from the start. The new 

team was almost entirely staffed with new hires. Because this new team was under heavy 

pressure to deliver a system, they tended to do the minimum amount of work necessary 

on a feature. The end result was that the testing and debugging phase took much longer 

than expected.' Staffing of the project changed due to illness/burnout of employees. 

Word for Windows was finally released on November 30,1989. 

In order to learn from the mistakes of previous projects, Microsoft had instituted a 

policy of reviewing every project upon its completion. Statistics were collected into a 

document along with minutes of meetings held during the project. This document (called 

the postmortem) was distributed to all managers in the business group and to senior 

managers. The postmortem for this project was four times larger than the average project 

postmortem. While [Ref. 10] does not describe what Microsoft actually did as a result of 

the postmortem, it does describe some of the ideas for improving product development 

that were discussed in the postmortem. The majority of developers enjoyed the informal 

approach to software development, however, some felt that a more structured 

development process would substantially improve the company's development 

performance. This would include relying on more formal project phases and strict 

milestones, as well as the implementation of formal structured methodologies for 

software development. Others felt the cause of Microsoft's problems was in its approach 

to project management. The current approach lacked focus and control. The developers 

felt that the program managers simply did not have the level of technical knowledge 

required to really understand a software development project. Other managers thought 

23 



the lack of a uniform strategy at the business level was the fundamental problem. They 

focused on the need for coherence across similar applications. 

It is interesting to see that the problems and successes in industry are similar to 

the problems and successes experienced in government. The rest of the thesis focuses on 

the SPI efforts at SSC-SD and, in particular, one project at SSC-SD. 

24 



VII. SOFTWARE PROCESS IMPROVEMENT EFFORT AT SSC-SD 

Software is a major part of many systems that SSC-SD acquires, develops, or 

maintains. Consistent management and engineering processes must be applied to the 

acquisition, development, and maintenance of software to identify and control the risks 

associated with software-intensive systems. In the current environment of rapidly 

changing technology and competition, the SSC-SD software engineering mission is to 

keep competitive by being a DoD leader in developing and acquiring quality software- 

intensive systems. [Ref. 14] 

The Software Engineering Process Office (SEPO) was established as a result of an 

SEI assessment in 1988 and was tasked to assist the SSC-SD software community in 

identifying, documenting, institutionalizing, and improving the processes they use to 

develop and maintain their software products. As projects improve their processes, it is 

expected that the government will save dollars on contracts and in-house labor which is 

necessary in this time of shrinking budgets and downsizing edicts. The government 

contractors, on the other hand, can expect to see an increase in productivity which will 

give them a more competitive edge in bidding for contracts and the company's capacity 

to do work will increase thereby increasing profits. SEPO has been developing policies 

and processes for project managers to use as well as providing in-house training. The SPI 

effort at SSC-SD uses CMM as a guide for improving organizations' software 

engineering process. The rest of the thesis describes the costs and benefits of the SPI 

activities implemented on an SSC-SD project called SmartNet. 

25 



26 



VIII. DESCRIPTION OF THE SMARTNET PROJECT 

SmartNet is a project that has been working to improve its software development 

processes for the last three years. Prior to December 1994, several years were spent by 

the project manager doing the necessary research in high performance and distributed 

computing needed to get SmartNet started. In December 1994, SAIC joined the team and 

started implementing SPI activities. It is fielded to several users. The technical team 

currently fixes problems, adds enhancements as approved, and distributes new software 

releases periodically. The latest software version contains 92,345 lines of code. This 

paper will describe the processes they have chosen to implement and the costs and 

benefits associated with the activities performed. This section describes the project and a 

little bit about the history and the people working on it. 

SmartNet is a scheduling tool for distributed High Performance Computing 

(HPC). SmartNet's goals are to: 

- Maximize computing power 

- Increase throughput 

- Optimize cost-effectiveness 

- Leverage existing resources 

- Ensure robust scheduling 

SmartNet provides an HPC scheduling framework for near-optimal and 

simultaneous employment of up to hundreds of resources (heterogeneous and 

homogeneous, local and remote) for thousands of tasks (heterogeneous and 

homogeneous).   Performance improvement of over one order of magnitude decrease in 

computing time with existing tasks on existing resources has been achieved and 

documented. 

SmartNet determines scheduling decisions by matching compute characteristics 

(code/algorithms and data) to resources (processors and networks) which are collectively 

called a Virtual Heterogeneous Machine (VHM). [Ref. 15] 

SmartNet can be beneficial to any system that uses multiple resources. It has to 

be integrated into current systems. Some of the current users of SmartNet are listed and 

their applications described in this paragraph. NASA Earth Observation System (EOS) at 

27 



Goddard Space Flight Center in Maryland extracts data from satellites and they use 

SmartNet to plan what processes go to what computers. The National Institute of Health 

(NIH) wants to use resources after hours. SmartNet has helped them to distribute jobs. 

Joint Task Force Advanced Technology Demonstration (JTF ATD) project has integrated 

SmartNet with its model server for the Pacific Disaster Center. They run simulated 

disaster models and SmartNet will act as a scheduling advisor within different sites. 

Florida State University, National Security Agency (NSA), Navy Simulation Systems 

(NSS), and the USS Coronado are among the numerous test and evaluation users. 

The Heterogeneous Computing Team (HCT), led by Richard Freund, consists of 

SSC-SD personnel in Code D4223, SAIC personnel, consultants, and academia from 

Naval Post Graduate School, George Mason University (GMU), University of Cincinnati, 

and Purdue. The SmartNet product is developed at SSC-SD and is funded by Defense 

Advanced Research Project Agency (DARPA) Information System Office (ISO), Deputy 

Under Secretary of Defense for Space Integration (DUSD (SI)), NASA EOS, NSA, High 

Performance Computing Modernization Office (HPCMO), and Space and Naval Warfare 

Command Center (SPAWAR). 

The team consists of twelve full-time and seven part-time people plus various 

academic collaborators. They have three full-time and two part-time managers; eight 

full-time and two part-time people that perform research, programming and engineering 

support; one full-time and one part-time administrative assistant; and two part-time 

consultants. 

Richard Freund, the project manager, has stated that his software process 

improvement goals and project goals are inter-related. They are: 

- To achieve a CMM maturity level 3 

- To produce a high quality product with high reliability while maintaining a high 

level of control in configuration management. 

- To successfully market the SmartNet product 

In order to develop and maintain a high quality product that is highly reliable and 

controlled, they must have processes in place and in practice to consistently achieve this 

goal. These factors are mandatory to successfully market SmartNet.   This project was 

28 



evaluated by an internal SAIC Common Approach Based Appraisal (CBA) Internal 

Process Improvement (IPI) assessment team and was found to satisfy all activities of a 

CMM level 3 project. SmartNet draws on both SSC-SD Program Management and SAIC 

Management and process improvement activities defined and implemented by SAIC to 

satisfy the organizational support requirements for that level. Since the processes used on 

SmartNet are SAIC processes (versus SSC-SD processes developed by the SEPO office), 

the "organizational" requirement/definition was not met. If SmartNet were to implement 

SSC-SD SPI processes, they could be re-evaluated for a level 3. A formal independent 

evaluation is planned in the fall of 1998; SmartNet was going to be one of the projects 

appraised at that time. Unfortunately, the project manager is leaving SSC-SD and the 

project is coming to an end in December 1997. 

SAIC's SPI goals are to achieve a CMM maturity level 3 in order to increase 

quality and quantity of work performed as well as continue to be competitive for 

government contracts. They achieved their goal. 

29 



30 



IX. SPI ACTIVITIES IMPLEMENTED ON SMARTNET 

According to the SmartNet configuration manager, all SEI-CMM level 2 and 3 

KP As are addressed on the SmartNet project. All SEI-CMM level 2 and 3 activities are 

defined and practiced in an effort to solve the problems discussed earlier in the thesis. 

The basis for the processes used by SAIC is described in several volumes of a document 

called Common Approach to Software Development and Maintenance.   This document is 

described below. 

Volume 1. Policy and Processes contains the following sections: 

- Software Development and Maintenance Policy 

- Software Development and Maintenance Process 

- Software Management Process 

- Software Review Process 

- Software Test Process 

- Software Quality Assurance Process 

- Software Configuration Management Process 

Volume II.   SEI CMM Compliance Matrix 

Volume III. Implementation and Tailoring Matrices 

Volume IV. Sample Forms, Checklists and References 

Volume V.   SAIC Metrics Handbook and Collection Guide 

- SAIC Handbook for Software Measurement Reporting Formats 

Volume VI. Training Program Definitions and Guidance. 

SAIC also has a Quality Program, a Software Training Program and a Measurement 

Program. Employees are required to learn and practice the methods described in the 

Common Approach. 

The SmartNet team has implemented an Oracle database to track and store their 

Software Change Requests. They keep metrics on the actions taken by the Software 

Configuration Control Board (SCCB) in this database. Reports are generated from this 

database and are included as Appendices to this document.   They also keep hardcopy 

files of SCRs. These files and the database are checked/audited every three months for 

31 



accuracy. CVS is used for version control. They are currently in the process of 

automating their processes. The following paragraphs describe the reports. 

The SmartNet - Software Change Request is filled in on-line by users/testers of 

SmartNet whenever a problem has been found or an enhancement has been identified. 

There are fields identified to store the following information: type of SCR, date of SCR, 

status, priority, deadline, level of effort expected, software lines of code (SLOC) affected, 

where the problem was found (design review/code review), the assignee, name of 

submitter and email address, version of software, tests run, and description of the 

problem/enhancement. When the SCCB meets, the new SCRs are discussed and action is 

assigned and noted on the SCR. A copy of this report is found in Appendix A. 

The Actual vs. Estimated Level of Effort (LOE) Report is used to track the amount 

of time estimated to fix the change and the actual amount of time it took to fix the 

change. It can be sorted by SCR number or by assignee. This report covers SCRs and 

Action Items (AI). The difference between the estimated LOE and the actual LOE is 

calculated and written on the report. If the difference is a positive number, the assignee 

fixed the problem faster than expected. If the difference is a negative number, the 

assignee spent more time than expected fixing the SCR. On the report sorted by assignee, 

a summary is provided for each assignee of the average time spent by the assignee on 

each SCR and a summation of the total number of hours spent fixing the SCRs assigned 

to them. The summary also includes a summation of the estimated minus the actual 

hours to fix the SCRs and an average ofthat number over all the SCRs. On the report 

sorted by SCR number, a summary is also provided at the end of the report. The 

summary includes the total number of hours estimated and actually spent fixing all the 

SCRs in the system and the difference between the two. The average of the actual, 

estimated and difference is also calculated. A copy of this report is found in Appendix B. 

The Closed AIs/SCRs Report can also be sorted by SCR number or by assignee. 

This report lists each SCR and AI along with the deadline for fixing the SCR or 

completing the AI. The actual LOE is also listed on the report. On the report sorted by 

assignee, a summary is provided for each assignee of the total number of hours spent 

32 



fixing SCRs/AIs and the average number of hours spent. A copy of this report is found in 

Appendix C. 

The SCRs/AIs Closed Between <start date> and <end date> lists all the 

SCRs/AIs that were closed within the dates specified in the starting date and ending date 

(i.e., SCRs/AIs closed between 01-Mar -1997 and 05-Sep-1997).   The SCRs are sorted 

by date closed. This report can also be generated for SCRs/AIs opened between specified 

dates. A copy of this report is in Appendix D. 

The Team Power Report gives a level of effort analysis and current status of each 

open SCR/AI.   This report is reviewed each week at the Configuration Control Board 

meeting and provides the project manager with a summary of what the team is working 

on.   The report is sorted by assignee.   It lists each SCR/AI assigned to the engineer, the 

due date of the SCR/AI (Ql through Q4 for which quarter of the year), and the 

Percentage of Effort (POE) set by the task leader.   It also lists the priority of the SCR/AI 

(normal, normal+, urgent), the percent done, the estimated level of effort (LOE), the 

current LOE, and the adjusted LOE. A rule of thumb used to determine the percent of 

work done is described below: 

-    the first 25% of the software developers time will be spent defining 

requirements 

the second 25% of the work is designing the change 

the third 25% is coding the change 

the last 25% is testing the change 

So, if the software developer was currently in the process of coding the change, it would . 

be estimated that the percent done is 50%. The estimated level of effort is the number of 

hours expected to be spent fixing the SCR/AI.   The current LOE is the cumulative 

number of hours actually performed. The adjusted LOE is the number of hours expected 

to be spent based on percentage done and the current LOE.  For each assignee, a 

summary is provided that lists the hours remaining, the total LOE, the LOE balance, and 

the adjusted LOE balance.    The hours remaining is the amount of hours left to fix the 

SCR; it is the difference between the due date of the SCR and the current date. The total 

33 



LOE is the sum of the LOE of all SCRs/AIs assigned to each person. The LOE balance is 

calculated by the formula 

hours remaining * POE - estimated LOE. 

The adjusted LOE balance takes into account the percentage done. A copy of this report 

is found in Appendix E. 

The SCR Metrics for Problem SCRs contains several "mini reports" based on 

metrics entered into the database. One report is called SCR Average Age Report. The 

data in these report covers a specific time frame (in days) entered by the operator. It lists 

all SCRs opened as of the end of each month specified by the time frame entered, and 

identifies how many of those SCRs have a critical/urgent priority.   The data in this report 

is skewed due to the fact that low priority SCRs with a due date of several months or 

years away are included in the data along with high priority SCRs with early due dates. 

Another report is the SCR Open Activity Report. This report lists the number of SCRs 

that have a priority of critical, urgent, normal, and low as of the end of each month 

specified by the time frame entered. The SCR Open/Close Rate Report lists the number 

of SCRs opened and closed at the end of each month specified by the time frame entered. 

The SCR Total Open Report lists the number of all SCRs opened as of the end of each 

month specified by the time frame entered. This report also lists the number of 

critical/urgent SCRs. Another set of these "mini reports" can be generated for SCR 

problems and enhancements. This report is called the SCR Metrics for Problem and 

Enhancement SCRs.   These reports are found in Appendix F. 

The SmartNet team has implemented a "Home Team Page" on the web to 

communicate among all of the developers and consultants and exchange technical ideas 

as well as meeting information. They call this "Newsgroup" discussion. 

Each release of a new software build requires 2-4 weeks of testing prior to release 

to the customers. The developers usually write the tests while others, less familiar with 

SmartNet, actually run the tests.   SCRs are written by the test team and fixed by the 

developers. The documentation is also updated to reflect the software changes 

implemented. 

34 



Each build is documented in a Version Description Document (VDD) that lists the 

lockdown and release dates, the status of each SCR included in this version, the 

requirements for the version and the lower priority fixes included. This information is 

stored in a repository. An example of the VDD is in Appendix G. 

SAIC provided training for its employees. The costs of this training are discussed 

in the next section. Classes taken are: 

- Common Approach Orientation (3 hours) 

- Software Project Management (24 hours) 

- Requirements Management (24 hours) 

- Configuration Management (8 hours) 

- Introduction to Software Quality Assurance Course (4 hours) 

- Software Quality Assurance for Practitioners (16 hours) 

- Estimation (4 hours) 

- Peer Reviews (8 hours) 

- Testing (8 hours) 

- Engineering Principles (8 hours) 

- Metrics (8 hours) 

- Process Group Operations (4 hours) 

- Common Approach Based Appraisal-Internal Process Improvement (CBA-IPI) 

(30 hours) 

SSC-SD also provided training for their employees on the SmartNet team. Some 

of the classes taken were: 

- Software Project Management Course (40 hours) 

- Grammar Brush-up for Writers (8 hours) 

- Contemporary Navy Writing (16 hours) 

- Giving Technical Presentations (16 hours) 

- Effective Leadership for Women (8 hours) 

One of the activities the SmartNet team implemented is the peer review. They 

have three types of peer reviews: formal design reviews, formal code reviews, and 

informal one-to-one reviews. The majority of the reviews done on SmartNet were design 

35 



reviews. As of December 1996, the team had only done a few code reviews. The design 

reviews are the time to focus on clarifying the requirements, discussing design issues and 

planning the design of the project. They did not keep records of defects found in design 

reviews because the purpose of the design review was to work out differences or 

misconceptions, not to generate Software Change Requests. The work surrounding the 

review topic was covered under an already open SCR (since they address bugs and 

enhancements under the same tracking system). They do keep track of "where" a defect 

is found in the SCR database, but that information is used mostly during the test phase. 

They do not keep track of defects found in the informal one-to-one review. 

The software development team uses a Software Detailed Design Review form 

and a checklist to help analyze proposed design changes.   A review panel consisting of 

the Software Manager, the Systems Engineer, and other software developers/engineers on 

the team discuss the design changes. At the design review meeting, the assignee must 

present his/her design and implementation plan. Each engineer who attends the design 

review must fill out the design review checklist. The software manager fills out the 

design review form indicating acceptance or rejection of the design change.   If the 

change is accepted, the assignee must submit a thoroughly documented design in paper. 

36 



X. ANALYSIS OF COSTS OF SPI ACTIVITIES IMPLEMENTED 

The tangible costs of implementing and maintaining SPI activities are evidenced 

in time spent. Table 2 is a summary of estimated time spent in this effort. The time 

included: 

- training 

setting up and maintaining the SmartNet database 

- SCCB meetings 

risk assessment meetings 

quality assurance audits 

process audits 

managing SCRs requirements management 

tracking time spent 

reporting 

unit and/or component test 

managing the source code itself 

periodic reviews 

It is impossible to quantitatively compare these efforts to the activities that existed prior 

to the implementation of formal process (e.g., planning, mitigating risk, addressing 

quality issues, evaluating/improving productivity, and reviewing the product) because 

there are no metrics on the former informal processes used by the SmartNet team. No 

software costs for the ORACLE database are included because SSC-SD already had 

purchased the software. 

The training costs for SAIC includes learning about CMM, how to implement 

CMM activities, and how to assess the maturity level of projects. The cost of designing 

and giving the courses is not included in this estimate since SAIC gives these classes to 

employees on all projects within the organization, not just SmartNet. The costs include 

labor hours spent in training. The dollar figure was derived from the number of class 

hours multiplied by the number of attendees multiplied by hourly rate. The hourly rate 

varies for each category of labor. The categories on SmartNet are project managers, 

project leads/senior engineers, and software engineers. 

37 



SSC-SD also provides training for its employees.   The specific classes are listed 

in the previous section of this thesis. The total costs were derived from the number of 

people attending the class multiplied by the number of hours plus the tuition costs for 

each student. 

An intangible cost described by S AIC personnel working on SmartNet is the time 

and effort expended to change the culture of the organization. The people on the project 

did not want to become involved with the SPI efforts and, as a consequence, were 

"fighting" the system. The employees wasted time as a result of attitudes against SPI. 

The solution they found was to make the SPI policies flexible enough so that the 

practitioners could use them. It is interesting to note that according to one employee, the 

same people who were resistant to implementing SPI activities in the beginning would 

not want to work on a project that didn't practice SPI now. 

38 



Description of Costs Costs incurred by 
SSC-SD 

Costs incurred by 
SAIC 

Total 

Training Costs (see 
text for details) 

$ 28,960 $ 32,654 $61,614 

ORACLE Database 
Set-up (estimated DP- 
3 half workyear 
FY95) 

$ 68,200 $ 68,200 

Action Items 
Implemented 
(estimated 600 hours 
@$41/hr) 

$ 24,600 $ 24,600 

Database 
Maintenance 
(estimated DP-3 1 
day/wk for 3 years) 

$112,066 $112,066 

Configuration 
Management 
(estimated half 
workyear @ $41/hr) 

$ 36,080 $ 36,080 

Developers 
(estimated 1 day/wk 
for SCCB/peer 
reviews/metrics @ 
$41/hr) 

$ 14,432 $ 14,432 

Total $209,226 $107,766 $316,992 

Table 2. Summary of Costs Incurred Implementing SPI Activities 

39 



40 



XI. ANALYSIS OF BENEFITS OF SPI ACTIVITIES IMPLEMENTED 

The SmartNet project manager, Richard Freund, believes that it takes two to three 

years to see the benefits of SPI efforts. The SPI activities on this project started three 

years ago. One of the benefits he has seen is that he has better management control over 

his program. The mechanisms that the team has in place to accomplish this are: the 

informal design/peer reviews, the website "Newsgroup", the maintenance of the 

SmartNet database, the generation of reports that give the status of the software 

development effort, and the weekly SCCB meetings. With better management control, 

Richard has more time to market SmartNet and build business. 

As described by the software development team, some of the tangible software 

quality improvements on this project are fewer system failures, better overall 

performance, and delivery of software builds closer to schedule.   Table 3 lists the data 

available on their software delivery schedules. 

The team also thinks that the software design is well documented and understood 

by the developers. This enables.developers to fix SCRs or add enhancements with less . 

effort required than in the beginning of the project when the software design was not as 

well documented. Figure 1 shows the estimated and actual LOE expended on SCRs for 

the project. The difference between the estimated and actual LOE is calculated by 

subtracting the actual LOE from the estimated LOE. The result is included in Figure 1. 

In most cases, the actual LOE exceeded the estimated LOE. This fact adds testimony to 

the difficulty of estimating software development even with SPI processes in place. The 

peaks of activity on this project occurred in preparation of the release of versions 2.1- 

beta, 2.5, and 2.7 of the software. Version 2.1-beta was the first documented software 

build released on 15 February 1995. Their SPI effort started in December 1994. Version 

2.5 was released on 5 February 1996. According to the reports generated from the 

database, the previous version (v2.3) was released almost 9 months prior to v2.5. So, it 

seems reasonable to expect the most amount of activity happened during the longest time 

between software versions. The average length of time between software versions was 

3.86 months. The third peak of activity occurred in preparation for release of version 2.7 

in October 1996.   Figure 2 shows the estimated costs associated with the actual LOE 

41 



expended fixing SCRs.   This was calculated by multiplying the LOE and the current rate 

of a software engineer. 

Software Version Planned Release 
Date 

Actual Release 
Date 

Version 2.1-beta 15 February 1995 

Version 2.1 21 February 1995 

Version 2.2a 4 May 1995 

Version 2.3 25 May 1995 

Version 2.5 5 February 1996 

Version 2.6 29 March 1996 22 April 1996 

Version 2.7 01 October 1996 10 October 1996 

Version 2.7.2 05 March 1997 05 March 1997 

Version 3.0 01 October 1997 Still unreleased 

Table 3. SmartNet Software Release Dates 

Figure 3 shows the number of SCRs closed and opened for each version of 

software released. The data used for this chart is found in Appendix F. This chart also 

shows the number of critical and urgent priority SCRs opened during the time frame in 

between each software version. The highest number of SCRs opened and closed occurs 

at the same time version 2.5 is released. As mentioned previously, the length of time 

42 



between version 2.3 and version 2.5 was more than twice as long as the average time 

between versions, so a higher number of SCRs would not be a surprise. The number of 

SCRs opened and closed continues to diminish for the subsequent software versions even 

though the time in between versions is longer than average. 

According to the project management team, some of the intangible benefits are 

customer satisfaction due to delivering a higher quality product that is built to customer 

specification, providing up-to-date user documentation, and conducting effective (crash 

free) demonstrations. The number of SCRs written has diminished by approximately 

45% over the last year and a half, which could indicate that SmartNet software is of 

higher quality than in years past. 

Another indicator of higher quality is illustrated in Table 4. It shows the 

estimated vs. actual SCRs written along with the reduction in defect rates experienced by 

this project. According to [Ref. 16], many SPI methods reduce the number of defects 

induced into a product, thus reducing rework costs. Defect rates are measured in terms of 

"Average Defects per KSLOC." Several sources quoted in [Ref. 16] have shown that 7 

defects per KSLOC is a typical defect rate throughout the development process for new 

code. Estimated SCRs is calculated by multiplying 7 times the KLOC. As evidenced in 

Table 4, SmartNet's defect rate is much lower. SAIC provided the SLOC for versions 

2.7.2 and 3.0. I used the same SLOC as version 2.7.2 for all other versions of software. 

Since most SCRs were found and written during the testing phase for each version, a 

possible conclusion is that the reduction in defect rates is the result of informal peer 

reviews and design reviews. 

The SAIC employees are not working the amount of overtime they did in the 

beginning of the project.   However, according to the software manager, although some of 

the peaks of overtime have disappeared since they started doing better process 

management, the overall amount of overtime has probably stayed level because the 

amount of work they attempt to do seems to expand to fit the time available. Other 

benefits are that the team is better educated due to extensive training offered at SAIC and 

SSC-SD. The people on the project are more accountable for their work and feel a sense 

of responsibility to make sure their work is done well. The employee morale is also 

43 



higher. This can be evidenced in the fact the members of the team participate in meetings 

by providing ideas for improving their product technically and ideas on improving 

marketing efforts. Communication is better between team members. They seem to have 

better attitudes and would not want to work on projects that did not have SPI activities 

implemented. 

44 



Smart Net SCR Level of Effort 

3000 

2500 

2000 i_ 
g    1500 
3 

x    1000 »    Estimated LOE 

Actual LOE 

. Difference 

Number of SCRs Fixed 

Figure 1. SmartNet SCR Level of Effort 

45 



Estimated Cost of Fixing SCRs 

120000 ,..,..,.,.,,.: ,..,.^....„,.,.. ,,.., 

100000 

S2 

ö 
Q 60000 

Si 
in 

O     40000 

20000 

\ 
80000    V, 

\ 

—v 
"A 

K 
1 
1 

-/— \  1— 
/\  i\ 

/ \ T \ 

/ \     / V 1 \   / j 

■■■■■ 
-Actual Cos 

*V 

100        200        300 400   500   600   700   800   900   1000  1100  1145 

Number of SCRs 

Figure 2. Estimated Costs of Fixing SCRs 

46 



SmartNetSCRs 

250 

200 

w 

O 
V) 

150 

100 

50 

I 

lljj™ 
liliilfl^^ 

nn 
■Bali 

7.   1 t     ' 
. " » 1 

•-■■*■.■■•/ v •'■••:-^L.       7> 
• •     • . • •   ..vi" •   .- /*■ 

■ . :         ■- / V. * 

*\         ■       ■      ■"   ■          ■    asm 
;■'■•.,;■«:;... .'/"lv •• :■: • 

A    \:   /     '•■■'•■ • "■"■■'    ••■ iNli^i 

■   r * .' 

IISI ISS) "'•■   ■-..•':,,:- "   /v../• ' ?\    \:-'-     ■: :   •• •-■ lip 

^^S^^^s '•""" A"'• - \       * "* / 

K/\. 

^^^^^^^^^^^^^^^^^^^^M^^^^p V' " J-^*vr"" ^*^~ 
s 

4 Scrs Closed 

■x— SCRs Opened 

_l Critical/Urgent Priority 

v2.1 beta     v2.1 v2.2a        v2.3 v2.5 v2.6 v2.7       V2.7.2        v3.0 

Software Version 

Figure3. SmartNetSCRs 

47 



Software 
Version 

KLOC Estimated 
SCRs 

Actual 
SCRs 
Opened 

Reduction 
in Defect 
Rates 

Cumu- 
lative # 
SCRs 

Cumu- 
lative 
Reduction 
in Defect 
Rates 

V2.1beta 93.603 655 85 87% 85 87% 

V2.1 93.603 655 5 99% 90 86% 

V2.2a 93.603 655 83 87% 173 74% 

V2.3 93.603 655 39 94% 212 68% 

V2.5 93.603 655 178 73% 390 41% 

V2.6 93.603 655 49 93% 439 33% 

V2.7 93.603 655 82 87% 521 20% 

V2.7.2 93.603 655 38 94% 559 15% 

V3.0 85.951 601 33 95% 592 2% 

Table 4. Defect Rates of SmartNet Software Versions 

48 



XII. CONCLUSIONS 

According to the SmartNet Project Manager and a few members of the 

development team, the SPI activities that resulted in the most benefits are in the KPA of 

Project Tracking and Oversight. The project manager and software manager have more 

insight into the status of the Software development effort, and therefore can make better 

decisions. The SmartNet team repeatedly praised the process used to track SCRs as an 

effective and efficient process. This was noted at the CBA-IPI conducted in May 1996. 

The reports generated from this SCR database provide the knowledge needed by 

management to better control the project and make sound business decisions. 

To summarize, the primary costs of implementing SPI activities on SmartNet 

were the costs to train the employees; setup and maintain the SCR database; and 

participate in SPI activities, including SCCB meetings, risk assessment meetings, quality 

assurance audits, requirements management, keeping metrics, reporting, testing, and 

periodic reviews. 

The benefits resulting from their efforts are: 

- Better management control over the project 

- Better overall performance of the software 

- Better documentation 

- Software delivery closer to scheduled date 

- Higher quality software 

- Higher customer satisfaction 

- Improved employee morale 

- Better communication among the team 

- Less overtime required to get the job done 

- Employees better educated 

- Increased employee pride in their work and increased responsibility and 

accountability for their work. 

In comparison, the benefits received from the efforts made on SmartNet are 

similar to what was documented in A Business Case for Software Process Improvement. 

[Ref. 16] One report sited states the many non-measurable benefits from a SPI program 

49 



include improved morale by the developers, increased respect for software from 

organizations external to software and less required overtime. Other benefits from SPI 

described in this report are that companies feel they are more competitive, improved 

customer satisfaction, and more repeat business from their customers. Another report 

claims that the first benefit resulting from SPI is the ability to meet schedule.   Based on 

Raytheon's SPI effort, benefits are that employees feel the company wants them to do a 

good job, higher employee morale, less absenteeism, lower attrition rates, and fewer 

nights and weekends required by employees. Most of these secondary benefits are hard 

to quantify and hard to measure. It is encouraging that SmartNet experienced the same 

benefits as other companies and projects that have implemented SPI activities. 

As documented in [Ref. 17], the benefit most frequently noted by the research 

participants concerned attitudinal changes. The morale and confidence of the developers 

improved significantly. Participants also attributed less overtime, less employee 

turnover, improved competitive advantage, and increased cooperation between functional 

groups as benefits resulting from process improvement initiatives. SmartNet experienced 

the same benefits. 

In summary, this thesis has discussed the issues and problems involved in 

software development and described both a formal and an informal approach to solving 

the problems inherent in software development. The discussions of SPI efforts in 

industry and government and the case study give additional credence to the idea that a 

well-defined process (whether formal or informal) will help any software development 

project to succeed. 

50 



APPENDIX A.   SOFTWARE CHANGE REQUEST 

SCR# 1063 SmartNet - Software Change Request 
SCR# 1063 

Title: SNAP time clock runs slow in LIVE mode 

Type:  PROBLEM Post-Mortem: N Submit Date: 18-0CT-1996 

Status  Priority Deadline LOE   SLOC  DR CR Assignee 

CLOSED  URGENT    Q3T-1996  5      0 Bill Adsit 

SCCB Action: 
SM     VCM    SQA    Date 

Resolution: 
Closing Engineer Date 

Submitter: Bill Adsit 
E-Mail: adsit@nosc.mil 
Version: 2.7 
Tests: ap014 

Description: 
This problem showed up on ap014, step 06 and 07.  It gets increasingly 
worse the longer sn-ap runs.  The problem is that the time field is 
updating slower than real time.  This "current time" value is used in 
SNAP to calculate ETC, running time, and other things.  Some of the 
symptoms are: jobs that don't start un-filling right away, jobs are 
"done" before they finish un-filling (short jobs may even disappear 
before they start unfilling), and when the error is over 10 or 15 
seconds (after running SNAP for as littleas five minutes), some of the 
Done jobs may show up in the Scheduled Jobs window. I looked at the code 
and determined that the problem is SNAP'S use of PlayrateTimerCB in Live 
mode.  This resets a one-second timer every second. Of course, it takes 
a few microseconds to respond to the timeout and restart the timer; 
Thus, every second, "current_time" gets a few more microseconds behind. 
The solution is to use REAL-TIME when running in Live mode. The libmrh 
Virtual time class method (i.e. current_time = VirtualTime::getTime() ) 
should be used in the ActionWin::set_time() method when in Live mode. 
This would update the "current_time" variable at least once per second. 

51 



52 



APPENDIX B. ACTUAL VS. ESTIMATED LEVEL OF EFFORT (LOE) 

REPORT 

Actual    vs.     Estimated       LOE       Report 
(Version 2) 

September 5, 1997 
Actl.  Est. 

Assignee  SCR#   AI# Title LOE   LOE  Est-Actl 

Bill Adsit  545        Runner locked up X 4    8        4 
display when trying to 
cancel jobs 

824        Problem modifying fields      6    6 
in the Editor on Solaris 
2 

875        Modify SNAP to handle job     2    8        6 
abort messages 

885        Grand Unified SNAP 204    80      -124 
Enhancement List 

894 Snap background display 1 8 . . 8 
895 Snap Locks up' when 

stepforward button is 
pressed. 

1 8 8 

896        Clicking caused display 8        8 
to disappear with 
Segmentation fault (core 
dum 

899        Machine names invisible       5    8        3 
in HP vue environment 

902 Fast forward speed 2    8        6 
lingers while playing 

903 SNAP needs feedback when     14    4      -10 
logfiles don't load 

922        SNAP Visual enhancements     95   40      -55 
968        Implement selection of       47   16      -31 

scheduler in runner gui 

SmartNet Team Report 
PAGE:   1 

53 



Actual    vs. Estimated 
(Version 2) 

L 0 E Report 

Assignee 

September 5, 1997 

SCR#    AI#  Title LOE 
Actl. Est. 
LOE Est-Actl 

1 4 3 
20 8 -12 

3 3 
4 4 

Bill Adsit 1019 
1022 

1024 
1034 

sn-ap color map problems 
Minor SNAP Visual 
Enhancements 

Big job kills sn-ap 
Testing Additions: Need a 
test for each GUI re. 
XUSERFILESEARCHPATH en 

1041 ETC value within sn-ap is 
incorrect 

10 -6 

1055 

1059 

SNAP needs to limit 
display of *L0NG* 
jobs/schedules and/or 
limit disp 

SNAP error with 3-digit 
hours in ETC field 

1060 SNAP still has memory 
problems creating pixmaps 
on some X-Terminals 

1063 SNAP time clock runs slow 
in LIVE mode 

1073 SNAP legend window needs 
close button and Windows 
menu needs checkboxe 

34 -26 

*********** 

avg 
sum 

20 
511 

-9 
-224 

SmartNet Team Report 
PAGE:   2 

54 



APPENDIX C. CLOSED AIs/SCRs REPORT 

Closed        AIs/SCRs       Report 
(Version 1) 

SCR# 

1 
2 
3 
4 

5 
6 
7 
8 

12 
13 

AI#     Title 

September  8,   1997 
Actl 

Dline    LOE 

Global Override 
Database Editor Display 
SmartNet Runner crash 
Editor crash in pop-up menu 

SmartNet halt due to Runner. 
Schedule Monitor Display lag 
Schedule Monitor problem 
Network Data editing 
SmartNet schedule-monitor crash IPPS 
Determine need for FOM class   JTF 
and get rid of it if possible. 

IPPS 
JTF 
JTF 
1995- 

Q2 
JTF 
JTF 
JTF 
IPPS 

16 
27 
3 
8 

Assignee 

Matt Kussow 
Dave Schwarze 
Wanda Lam 
Dave Schwarze 

2 8  Mark Campbell 
18 Steve Ambrosius 
45  Dave Schwarze 

Dave Schwarze 
9  Dave Schwarze 

80  Matt Kussow 

14 
15 
16 

17 

18 

19 
20 

21 

SN BUG REPORT 
SN UPDATE REPORT 
Two 'exper_adds' occur for one 
job(should only be one) 

Newer version of libmrh desired IPPS 
for SN 

Replacement of (GNU) String 
class with MString class 

RUNNER modification 
Runner "Clear Schedule" not 
successfully canceling jobs. 
Rescheduling too often. JTF 

JTF 1 John Lima 
JTF 1 Brad Rust 
JTF 1 Dave Schwarze 

d IPPS 8 Brad Rust 

IPPS 80 John Lima 

JTF 1 Wanda Lam 
1995-Q3 1 Mark Campbell 

Elaine Keith 

22 
23 

24 

25 

Editing Global Overrides. 
Saving Argset information in 
Runner doesn't work properly. 

Runner's "Save Argset" should 
use File Selection Wiget 

Improve security robustness of 1995- 
Message Object classes.        Q3 

IPPS 1 John Lima 
IPPS 6 Wanda Lam 

JTF 8 Wanda Lam 

30 Mike Halderman 

SmartNet Team Report 
PAGE:   1 

55 



56 



APPENDIX D. SCRs/AIs CLOSED BETWEEN <START/END DATE> 

SCRs/AIs     Closed 
Between Ol-MAR-1997  and  05-SEP-1997 

Fri Sep 5 09:47:26 PDT 1997 

SCR/AI #  SCR Title DATE_CLOSED Assignee 

SCR #1091 make a conversion routine for 
"old" log file formats.       07-MAR-1997  Marc Weissman 

SCR #1103  Minor modifications for NASA  07-MAR-1997 Matt Kussow 
planning 

SCR #1104 HP CC -O compiler crash on 
utils.cc 07-MAR-1997 Matt Kussow 

SCR #1108  Job network profile 
information not getting to 
scheduler. 07-MAR-1997  Matt Kussow 

SCR #1100  sn-ap needs to handle jobs 
that are already running.     07-MAR-1997 Marc Weissman 

SCR #1089 Runner should start snap 
instead of monitor. 17-MAR-1997  Wanda Lam 

SCR #1111  test apOOl failed 17-MAR-1997 Marc Weissman 

SCR #1114  correct improper for statement 17-MAR-1997 
In sn/server/src/Model.cc 

SCR #1116 Minor modifications for NASA  17-MAR-1997 
planning II 

SCR #1115  take libdebug stuff out of 
libmrh 17-MAR-1997 

SCR #1113  setup new style SN_VERSION for 
main devel, and v2_7_a branch 17-MAR-1997 

SCR #1110  sn-submit006 step 2 failed to 17-MAR-1997  John Lima 
complete successfully on any 
platform. 

SCR #1120  reconfigure version string to  03-APR-1997  John Lima 
FMT: MAJOR.minor.build 

SmartNet Team Report 
PAGE:   1 

SCRs/AIs  Closed 

57 



Between 01-MAR-1997 and 05-SEP-1997 

Fri Sep 5 09:47 :26 PDT 1997 

SCR/AI # SCR Title DATE_CLOSED Assignee 

SCR #552 Secondary testing failed on 
test sn-control001 

30-APR-1997 Brad Rust 

SCR #1128 sn-submit fails to use 
machineLogin.db 

30-APR-1997 Matt Kussow 

SCR #1132 Constraint's scheduler combine 
Load enhancements 

30-APR-1997 Elaine Keith 

SCR #1095 RTUtils::FindRsh needs 
/usr/bin/rsh 30-APR-1997 Matt Kussow 

SCR #1098 SmartNet Log File and Reader 
headers 30-APR-1997 Marc Weissman 
are allocated whenever included. 

AI #56 Incorporate NASA data into 
SmartNet database 

30-APR-1997 Matt Kussow 

SCR #1070 sn-submit002, stepOl failed on 
guava 30-APR-1997 Wanda Lam 

SCR #1011 sn-submit does not return to 
command line prompt after 
completion 30-APR-1997 Matt Kussow 

SCR #1125 SmartNet Runner Core Dumps 
When killing jobs during 29-MAY-1997 Matt Kussow 
Runner003 Test on 

SCR #1109 Too much extraneous SNAP 
output. 29-MAY-1997 Marc Weissman 

SCR #1124 ETC not calculated correctly 
with runner • 29-MAY-1997 Matt Kussow 

SCR #1003 SmartNet-Runner Taking Longer 
than 2 seconds to load an 
argument set 29-MAY-1997 Matt Kussow 

SCR #1121 runnerOOl step 5 failed on all 
3 platforms. 

12-JUN-1997 Wanda Lam 

SmartNet Team Report 
PAGE:   2 

SCRs/AIs  Close d 

58 



SCR/AI # 

Between 01-MAR-1997 and 05-SEP-1997 

Fri Sep 5 09:47:26 PDT 1997 

SCR Title DATE_CLOSED Assignee 

SCR #1071 

SCR #1081 

SCR #1140 

SCR #1138 

SCR #1136 

SCR #1069 

SCR #1049 

SCR #1040 

SCR #857 

AI #64 

SCR #1141 

SCR #1139 

minimum size too small for font. 

asynccommOlO failed on SunOS  01-JUL-1997 

EditorOOl Test COMMIT Button 
Does Not Ungray 

"sn-ap -d All -s -f new.snl 
-play" produces file name 
error. 

Terry Koyama 

01-JUL-1997  Terry Koyama 

01-JUL-1997 

Verbose is suppose to use cout 01-JUL-1997 
(rather than cerr) as its output 
stream 

Terry Koyama 

Terry Koyama 

Replace all cerr's, cout's and 
other output statements with 
debug 

EditorOOl Test Problems 

Smartnet-Runner Opens Very 
Small %Change_Schedulers' 
Window on Solaris 

SmartNet Client hangs 

01-JUL-1997 

01-JUL-1997 

Terry Koyama 

Terry Koyama 

01-JUL-1997  Terry Koyama 

01-JUL-1997  Terry Koyama 

RunnerOOl.aix.01 Step 4 New 
.argset doesn't show up until  15-JUL-1997 
restarting r 

PDC Model database 15-JUL-1997 

Add option to enable/disable  15-JUL-1997 
learning in SN-submit 

Improve performance of        15-JUL-1997 
findEarliestFit function and update 
of unit test 

Wanda Lam 

Mike Godfrey 

Marc Weissman 

Francesca Mirabil 

SmartNet Team Report 
PAGE: 3 

SCRs/AIs    Opened 

59 



Between Ol-MAR-1997 and 05-SEP-1997 

Fri Sep 5 09:46:22 PDT 1997 

SCR/AI #   SCR Title 
Date 
Opened Status    Assignee 

SCR #1103  Minor modifications for 
NASA planning 

SCR #1104  HP CC -0 compiler crash 
on utils.cc 

07-MAR-1997  CLOSED     Matt KUSSOW 

07-MAR-1997  CLOSED Matt KUSSOW 

SCR #1107  Implement new asynchro- 
nous API (Client and 
Server) 

SCR #1108  Job network profile 
information not getting to 
scheduler 

07-MAR-1997 OPEN John Lima 

07-MAR-1997 CLOSED Matt Kussow 

SCR #1100 sn-ap needs to handle 
jobs that are already- 
running . 

SCR #1110  sn-submit006 step 2 
Failed to complete 
Successfully on any 
Platform. 

SCR #1111  test apOOl failed 

SCR #1112  ap021 failed to read from 
a log file (invalid format, 
error) 17-MAR- 

SCR #1116  Minor modifications for  17-MAR- 
NASA planning II 

07-MAR-1997  CLOSED 

1997 

1997 

CLOSED 

CLOSED 

SCR #1113  setup new style SN_ 
VERSION for main devel,  17-MAR-1997  CLOSED 
and v2_7_a branch 

SCR #1115  take libdebug stuff out  17-MAR-1997  CLOSED 
Of libmrh 

Marc Weissma 

07-MAR-1997 CLOSED John Lima 

07-MAR-1997 CLOSED Marc Weissma 

Marc Weissma 

SCR #1114  correct improper for 
statement in 
sn/server/src/Model.cc 

17-MAR-1997  CLOSED 

SmartNet Team Report 
PAGE:   1 

SCRs/AIs  Opened 

60 



Between Ol-MAR-1997 and 05-SEP-1997 

Fri Sep 5 09:46:22 PDT 1997 

SCR/AI #  SCR Title 
Date 
Opened Status    Assignee 

SCR #1003  SmartNet-Runner Taking  15-APR-1997 
Longer than 2 Seconds to 
Load an Argument Set 

SCR #1040  SmartNet Client hangs    15-APR-1997 

SCR #1128  sn-submit fails to use  15-APR-1997 
machineLogin.db 

SCR #1132  Constraint's scheduler  15-APR-1997 
combine load enhancements 

CLOSED    Matt Kussow 

CLOSED 

CLOSED 

Terry Koyama 

Matt Kussow 

CLOSED    Elaine Keith 

SCR #1121  runnerOOl step 5 failed  15-APR-1997 
On all 3 platforms. 

CLOSED    Wanda Lam 

SCR #1119 create a network agent  15-APR-1997 
For SmartNet 

OPEN Marc Weissma 

SCR #1124  ETC not calculated 
Correctly with runner 

SCR #1117  FileBox not working 
Under GCC 2.7 

15-APR-1997  CLOSED     Matt Kussow 

15-APR-1997  CLOSED    John Lima 

SCR #1109 

SCR #1071 

SCR #1130 

SCR #1081 

SCR #1098 

Too much extraneous SNAP 15-APR-1997 
output. 

CLOSED    Marc Weissma 

15-APR-1997 

15-APR-1997 

asynccommOlO failed on 
SunOS 

conversion routine 
Chokes on asynccomm 
messages. 

EditorOOl Test COMMIT    15-APR-1997 
Button Does Not Ungray 

SmartNet Log File and   15-APR-1997 
Reader headers are allocated 
whenever included. 

CLOSED 

CLOSED 

Terry Koyama 

Marc Weissma 

CLOSED    Terry Koyama 

CLOSED    Marc Weissma 

SmartNet Team Report 
PAGE:   2 

61 



SCRs/AIs     Opened 
Between  01-MAR-1997   and  05-SEP-1997 

Fri Sep 5 09:46:22 PDT 1997 

SCR/AI #   SCR Title 
Date 
Opened Status    Assignee 

SCR #1133  Simplify server Override 12-JUN-1997 
mechanism 

OPEN Matt Kussow 

SCR #1134  Improved network topologyl2-JUN-1997 
representation 

OPEN Francesca Mi 

SCR #1135  sn-ap's LIVE command Iinel2-JUN-1997 
option is useless and needs 
to be modified. 

CLOSED    Terry Koyama 

SCR #1136 Replace all cerr's,     17-JUN-1997 
Cout's and other output statements 
with debug and 

CLOSED    Terry Koyama 

SCR #1141  Add option to enable/    01-JUL-1997 
Disable learning in SN-submit 

CLOSED    Marc Weissma 

SCR #1140  "sn-ap -d All -s -f      01-JUL-1997 
New.snl -play" produces 
File name error. 

CLOSED    Terry Koyama 

SCR #1138  Verbose is suppose to   01-JUL-1997 
Use cout (rather than cerr) as 
its output stream 

CLOSED    Terry Koyama 

SCR #1139  Improve performance of  01-JUL-1997 
findEarliestFit function and 
update of unit tes 

CLOSED Francesca Mi 

SCR #857  Runner001.aix.01 Step 4  15-JUL-1997 
New .argset doesn't show up 
until restarting r 

CLOSED    Wanda Lam 

SCR #1106 Upgrade to existing CPU 15-JUL-1997 
Load agent 

OPEN Marc Weissma 

SCR #1143  smartnet-runner core     15-JUL-1997 
Dumped when adding dependency. 

OPEN Wanda Lam 

SmartNet Team Report 
PAGE:   3 

62 



APPENDIXE. TEAM POWER REPORT 

Team       Power       Report (Page  1) September  05,   1997 

SCR/AI   Priority % Done  Est.LOE  Curr.LOE  Last Week ALOE 

John Lima Q4-1996( 01-JAN-1997 ) POE: 0.50 
1). AI#45   NORMAL        96 24 69 0      71 
+ + 

|  Hrs. Remaining: 9 Total LOE: 24    LOE Bai.: -99999 ALOEB: 3    | 
+ + 

Matt Kussow Q4-1996( 01-JAN-1997 ) POE: 0.40 
2). AI#21   NORMAL+       90 40 26 0      28 
3). AI# 8   NORMAL 0 8 0 0       8 
+ + 

|  Hrs. Remaining: 9 Total LOE: 48   LOE Bai.: -19   ALOEB: -7   I 
+ + 

Francesca Mirabile     Q3( 10-SEP-1997 ) POE: 0.50 
4). SCR#1134 NORMAL+      22        320        208 0     945 
+ + 

|  Hrs. Remaining: 35 Total LOE: 320  LOE Bai.: -95   ALOEB: -720 | 
+ _ + 

John Lima Q3( 10-SEP-1997 ) POE: 0.60 
5). SCR#1107 NORMAL+      55       1600       1721 0    3129 
+ + 

|  Hrs. Remaining: 35 Total LOE: 1600 LOE Bai.: -99999 ALOEB: -1387| 
+ + 

Marc Weissman Q3( 10-SEP-1997 ) POE: 0.50 
6). SCR#1106 NORMAL       20 80 16 0      80 
+ _ + 

|  Hrs. Remaining: 35 Total LOE: 80   LOE Bai.: -47   ALOEB: -47  | 
+ + 

Matt KUSSOW Q3( 10-SEP-1997 ) POE: 0.40 
7). SCR#1133 NORMAL        0 40 0 0      40 
+ . + 

|  Hrs. Remaining: 35 Total LOE: 40    LOE Bai.: -26    ALOEB: -26  | 
+ + 

Wanda Lam Q3( 10-SEP-1997 ) POE: 0.40 
8). SCR#1143 URGENT       80          8          6          0       7 
+ + 

|  Hrs. Remaining: 35 Total LOE: 8    LOE Bai.: 12    ALOEB: 13   | 
+ + 

Government Representative 
Date 

63 



64 



APPENDIX F. SCR METRICS FOR PROBLEM SCRs 

Version 2.1-beta 

SCR Metrics for Problem SCRs 

SCR Average Age Report  (week resolution, problems only) 
(Report covers 11/01/94 to 02/15/95) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
11/06/94 0 0 
11/13/94 0 0 
11/20/94 0 0 
11/27/94 0 0 
12/04/94 0 0 
12/11/94 3 3 
12/18/94 6 10 
12/25/94 9 10 
01/01/95 13 17 
01/08/95 19 17 
01/15/95 21 31 
01/22/95 28 38 
01/29/95 23 0 
02/05/95 23 5 
02/12/95 21 4 
2/15/95 18 5 

SCR OPEN Activity Report  ( week resolution, problems only ) 
(Report covers 11/01/94 to 02/15/95) 
Date: 11/17/97 

Date Week Ending 

11/06/94 

11/13/94 

11/20/94 

11/27/94 

12/04/94 

12/11/94 

12/18/94 

12/25/94 

01/01/95 

01/08/95 

01/15/95 

01/22/95 

SCR Priorities 
CRITICAL URGENT NORMAL LOW 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 2 6 0 

0 0 10 0 

0 1 2 3 

0 0 3 1 

0 1 0 0 

1 0 4 1 

0 0 0 0 

65 



01/29/95 

02/05/95 

02/12/95 

2/15/95 

7 

2 

6 

10 

SCR Open/Close Rate Report  (week resolution, problems only) 
(Report covers 11/01/94 to 02/15/95) 
Date: 11/17/97 

Date Week Ending OPENed CLOSED 
11/6/94 0 0 
11/13/94 0 0 
11/20/94 0 0 
11/27/94 0 0 
12/4/94 0 0 
12/11/94 9 0 
12/18/94 10 7 
12/25/94 6 4 
1/1/95 4 0 
1/8/95 1 4 
1/15/95 6 2 
1/22/95 0 0 
1/29/95 9 8 
2/5/95 10 6 
2/12/95 14 9 
2/15/95 16 4 

SCR Total OPEN Report  (week resolution, problems only) 
(Report covers 11/01/94 to 02/15/95) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
11/6/94 0 0 
11/13/94 0 0 
11/20/94 0 0 
11/27/94 0 0 
12/4/94 0 0 
12/11/94 9 3 
12/18/94 12 2 
12/25/94 14 2 
1/1/95 18 2 
1/8/95 15 3 
1/15/95 19 2 
1/22/95 19 2 
1/29/95 20 0 
2/5/95 24 2 
2/12/95 30 2 
2/15/95 42 3 

Version 2.1 

SCR Metrics for Problem SCRs 

66 



SCR Average Age Report  (week resolution, problems only) 
(Report covers 02/16/95 to 02/21/95) 
Date: 11/17/97 

Date Week Ending 
02/19/95 
2/21/95 

All SCRs OPENed 
22 
22 

CRITICAL/URGENT SCRs 
9 
6 

SCR OPEN Activity Report  ( week resolution, problems only ) 
(Report covers 02/16/95 to 02/21/95) 
Date: 11/17/97 

Date Week Ending CRITI 

02/19/95 0 

2/21/95 0 

SCR Priorities 
URGENT NORMAL LOW 

0 

0 

SCR Open/Close Rate Report  (week resolution, problems only) 
(Report covers 02/16/95 to 02/21/95) 
Date: 11/17/97 

Date Week Ending OPENed CLOSED 
2/19/95 1 0 
2/21/95 4 1 

SCR Total OPEN Report  (week resolution, problems only) 
(Report covers 02/16/95 to 02/21/95) 
Date: 11/17/97 

Date Week Ending 
2/19/95 
2/21/95 

All SCRs OPENed 
42 
45 

CRITICAL/URGENT SCRs 
3 
6 

Version 2.2a 

SCR Metrics for Problem SCRs 

SCR Average Age Report  (week resolution, problems only) 
(Report covers 02/22/95 to 05/04/95) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
02/26/95 28 14 
03/05/95 36 25 
03/12/95 27 5 
03/19/95 35 12 
03/26/95 38 10 
04/02/95 44 17 
04/09/95 49 29 
04/16/95 53 23 
04/23/95 48 13 
04/30/95 55 20 
5/4/95 55 25 

67 



SCR OPEN Activity Report  (week resolution, problems only) 
(Report covers 02/22/95 to 05/04/95) 
Date: 11/17/97 

Date Week Ending 

02/26/95 

03/05/95 

03/12/95 

03/19/95 

03/26/95 

04/02/95 

04/09/95 

04/16/95 

04/23/95 

04/30/95 

5/4/95 

SCR Priorities 
CRITICAL        URGENT NORMAL LOW 

0 0 

0 0 

20 6 

0 0 

3 0 

3 0 

3 0 

3 0 

7 1 

0 0 

4 3 

SCR Open/Close Rate Report  (week resolution, problems only) 
(Report covers 02/22/95 to 05/04/95) 
Date: 11/17/97 

Date Week Ending OPENed CLOSED 
2/26/95 1 4 
3/5/95 0 1 
3/12/95 30 7 
3/19/95 1 . 5 
3/26/95 9 3 
4/2/95 4 6 
4/9/95 3 16 
4/16/95 9 9 
4/23/95 18 6 
4/30/95 0 1 
5/4/95 8 7 

SCR Total OPEN Report  (week resolution, problems only) 
(Report covers 02/22/95 to 05/04/95) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
2/26/95 42 3 
3/5/95 41 2 
3/12/95 64 4 
3/19/95 60 4 
3/26/95 66 8 
4/2/95 64 6 
4/9/95 51 3 

68 



4/16/95 
A/23/95 
A/30/95 
5/4/95 

51 
63 
62 
63 

4 
10 
10 
9 

Version 2.3 

SCR Average Age Report  (week resolution, problems only) 
(Report covers 05/05/95 to 05/25/95) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/U1 ̂GENT SCRs 
05/07/95 58 30 
05/14/95 57 47 
05/21/95 49 9 
5/25/95 50 14 

SCR OPEN Activity Report  ( week resolution, problems only ) 
(Report covers 05/05/95 to 05/25/95) 
Date: 11/17/97 

SCR Priorities 
Date Week Ending RITICAL URGENT 

05/07/95 0 0 

05/14/95 0 0 

05/21/95 4 1 

5/25/95 3 9 

L LOW 

0 0 

2 0 

1 1 

4 2 

SCR Open/Close Rate Report  (week resolution, problems only) 
(Report covers 05/05/95 to 05/25/95) 
Date: 11/17/97 

Date Week Ending OPENed CLOSED 
5/7/95 0 1 
5/14/95 2 21 
5/21/95 19 27 
5/25/95 18 18 

SCR Total OPEN Report  (week resolution, problems only) 
(Report covers 05/05/95 to 05/25/95) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CR 
5/7/95 62 8 
5/14/95 43 4 
5/21/95 35 10 
5/25/95 35 6 

CRITICAL/URGENT SCRs 

69 



Version 2.5 

SCR Metrics for Problem SCRs 

SCR Average Age Report  (week resolution, problems only) 
(Report covers 05/26/95 to 02/05/96) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
05/28/95 53 17 
06/04/95 60 25 
06/11/95 68 35 
06/18/95 78 32 
06/25/95 88 39 
07/02/95 88 24 
07/09/95 95 28 
07/16/95 93 22 
07/23/95 115 39 
07/30/95 120 46 
08/06/95 134 42 
08/13/95 54 12 
08/20/95 50 13 
08/27/95 132 57 
09/03/95 126 44 
09/10/95 104 30 
09/17/95 121 44 
09/24/95 85 58 
10/01/95 92 50 
10/08/95 61 57 
10/15/95 67 106 
10/22/95 66 59 
10/29/95 74 66 
11/05/95 52 17 
11/12/95 45 9 
11/19/95 86 21 
11/26/95 98 30 
12/03/95 97 38 
12/10/95 104 64 
12/17/95 106 71 
12/24/95 113 78 
12/31/95 120 85 
01/07/96 99 48 
01/14/96 105 81 
01/21/96 114 88 
01/28/96 121 95 
02/04/96 ' 122 70 
2/5/96 123 71 

SCR OPEN Activity Report  ( week resolution, problems only 
(Report covers 05/26/95 to 02/05/96) 
Date: 11/17/97 

SCR Priorities 
Date Week Ending     RITICAL       URGENT 

05/28/95 

06/04/95 

0 0 

1 0 

70 



06/11/95 0 0 0 1 

06/18/95 0 0 0 0 

06/25/95 0 0 0 0 

07/02/95 0 1 1 0 

07/09/95 0 1 0 0 

07/16/95 0 2 1 0 

07/23/95 0 0 0 0 

07/30/95 0 0 1- 0 

08/06/95 0 1 0 0 

08/13/95 0 12 5 0 

08/20/95 1 8 0 0 

08/27/95 0 0 1 0 

09/03/95 0 1 0 0 

09/10/95 7 5 1 0 

09/17/95 0 0 0 0 

09/24/95 1 0 8 0 

10/01/95 1 0 0 ' 0 

10/08/95 0 0 9 1 

10/15/95 0 0 2 1 

10/22/95 0 2 2 . 0 

10/29/95 0 0 4 0 

11/05/95 6 11 6 1 

11/12/95 6 20 1 0 

11/19/95 6 15 2 0 

11/26/95 0 3 0 0 

12/03/95 0 2 2 0 

12/10/95 0 0 1 0 

12/17/95 0 0 1 0 

12/24/95 0 0 0 0 

12/31/95 0 0 0 0 

01/07/96 0 2 

71 

4 0 



01/14/96 0 0 2 0 

01/21/96 0 0 0 0 

01/28/96 0 0 0 0 

02/04/96 0 1 2 0 

2/5/96 0 0 0 0 

SCR Open/Close Rate Report  (week resolution, problems only) 
(Report covers 05/26/95 to 02/05/96) 
Date: 11/17/97 

Date Week Ending OPENed CLOSED 
5/28/95 0 0 
6/4/95 3 5 
6/11/95 1 6 
6/18/95 0 3 
6/25/95 0 1 
7/2/95 2 0 
7/9/95 1 5 
7/16/95 3 1 
7/23/95 0 7 
7/30/95 1 3 
8/6/95 1 2 
8/13/95 17 10 
8/20/95 9 5 
8/27/95 1 17 
9/3/95 1 0 
9/10/95 13 12 
9/17/95 0 1 
9/24/95 9 4 
10/1/95 1 1 
10/8/95 10 0 
10/15/95 3 3 
10/22/95 4 1 
10/29/95 4 6 
11/5/95 24 16 
11/12/95 27 21 
11/19/95 23 45 
11/26/95 3 4 
12/3/95 4 3 
12/10/95 1 1 
12/17/95 1 0 
12/24/95 0 0 
12/31/95 0 0 
1/7/96 6 1 
1/14/96 2 4 
1/21/96 0 1 
1/28/96 0 0 
2/4/96 3 3 
2/5/96 0 0 

SCR Total OPEN Report  (week resolution, problems only) 
(Report covers 05/26/95 to 02/05/96) 
Date: 11/17/97 

72 



Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
5/28/95 35 6 
6/4/95 33 5 
6/11/95 28 4 
6/18/95 25 1 
6/25/95 24 1 
7/2/95 26 2 
7/9/95 22 2 
7/16/95 24 3 
7/23/95 17 2 
7/30/95 15 2 
8/6/95 14 2 
8/13/95 21 10 
8/20/95 25 14 
8/27/95 9 2 
9/3/95 10 3 
9/10/95 11 5 
9/17/95 10 4 
9/24/95 15 3 
10/1/95 15 4 
10/8/95 25 4 
10/15/95 25 2 
10/22/95 28 4 
10/29/95 26 4 
11/5/95 34 17 
11/12/95 40 23 
11/19/95 18 5 
11/26/95 17 4 
12/3/95 18 3 
12/10/95 18 2 
12/17/95 19 2 
12/24/95 19 2 
12/31/95 19 2 
1/7/96 24 4 
1/14/96 22 2 
1/21/96 21 2 
1/28/96 21 2 
2/4/96 21 3 
2/5/96 21 3 

Version 2 6 

SCR Metrics for Problem SCRs 

SCR Average Age Report (week resolution, problems only) 
(Report covers 02/06/96 to 04/22/96) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
02/11/96 123 59 
02/18/96 136 84 
02/25/96 123 91 
03/03/96 122 130 
03/10/96 118 93 
03/17/96 132 74 
03/24/96 116 42 
03/31/96 81 4 

73 



04/07/96 107 8 
04/14/96 122 16 
04/21/96 146 25 
4/22/96 147 26 

SCR OPEN Activity Report  ( week resolution, problems only 
(Report covers 02/06/96 to 04/22/96) 
Date: 11/17/97 

SCR Priorities 
URGENT 

0 

0 

0 

0 

1 

0 

1 

16 

7 

1 

0 

0 
SCR Open/Close Rate Report  (week resolution, problems only) 
(Report covers 02/06/96 to 04/22/96) 
Date: 11/17/97 

Date Week Ending CRITI 

02/11/96 2 

02/18/96 0 

02/25/96 0 

03/03/96 0 

03/10/96 0 

03/17/96 0 

03/24/96 0 

03/31/96 0 

04/07/96 0 

04/14/96 0 

04/21/96 0 

4/22/96 0 

NORMAL LOW 

2 0 

0 0 

2 0 

4 0 

1 0 

0 0 

6 0 

0 0 

2 0. 

1 0 

2 0 

0 0 

Date Week Ending OPENed CLOSED 
2/11/96 4 3 
2/18/96 0 1 
2/25/96 2 2 
3/3/96 4 4 
3/10/96 2 0 
3/17/96 0 5 
3/24/96 7 4 
3/31/96 16 6 
4/7/96 9 16 
4/14/96 2 4 
4/21/96 3 7 
4/22/96 0 0 

SCR Total OPEN Report  (week resolution, problems only) 
(Report covers 02/06/96 to 04/22/96) 
Date: 11/17/97 

Date Week Ending       All SCRs OPENed        CRITICAL/URGENT SCRs 
2/11/96 22 4 

74 



2/18/96 21 3 
2/25/96 21 3 
3/3/96 21 2 
3/10/96 23 3 
3/17/96 18 1 
3/24/96 21 2 
3/31/96 31 13 
4/7/96 24 7 
4/14/96 22 4 
4/21/96 18 2 
4/22/96 18 2 

Version 2 .7 

SCR Metrics for Problem SCRs 

solution, problems only) SCR Avera je Age Report (week re£ 
(Report covers 04/23/96 to 10/10/96) 
Date: 11/17/97 

Date Week Ending All SCRs ÖPENed CRITICAL/URGENT SCRs 
04/28/96 132 23 
05/05/96 132 30 
05/12/96 142 32 
05/19/96 141 39 
05/26/96 134 59 
06/02/96 141 66 
06/09/96 150 73 
06/16/96 157 80 
06/23/96 164 87 
06/30/96 171 94 
07/07/96 178 101 
07/14/96 161 108 
07/21/96 174 115 
07/28/96 181 122 
08/04/96 187 129 
08/11/96 147 47 
08/18/96 154 54 
08/25/96 147 47 
09/01/96 170 52 
09/08/96 204 97 
09/15/96 223 104 
09/22/96 95 14 
09/29/96 72 15 
10/06/96 129 32 
10/10/96 150 28 

SCR OPEN Activity Report  ( week resolution, problems only ) 
(Report covers 04/23/96 to 10/10/96) 
Date: 11/17/97 

SCR Priorities 
Date Week Ending CRITICAL URGENT NORMAL LOW 

04/28/96 0 2 2 0 

05/05/96 0 0 

75 

2 0 



05/12/96 0 0 2 0 

05/19/96 0 0 2 0 

05/26/96 0 0 9 0 

06/02/96 0 0 0 0 

06/09/96 0 0 2 0 

06/16/96 0 0 0 0 

06/23/96 0 0 0 0 

06/30/96 0 0 0 0 

07/07/96 0 0 0 0 

07/14/96 0 0 3 0 

07/21/96 0 0 0 0 

07/28/96 0 0 0 0 

08/04/96 0 0 1 0 

08/11/96 0 2 2 0 

08/18/96 0 0 0 0 

08/25/96 0 1 1 0 

09/01/96 0 1 1 . 0 

09/08/96 0 0 0 0 

09/15/96 0 0 1 0 

09/22/96 4 12 4 0 

09/29/96 0 9 5 0 

10/06/96 0 2 0 0 

10/10/96 1 11 0 0 

SCR Open/Close 
(Report covers 
Date: 11/17/97 

Rate Rep 
04/23/96 

ort 
to 

(week resc 
10/10/96) 

lution, problems only) 

Date Week 
4/28/96 
5/5/96 
5/12/96 
5/19/96 
5/26/96 
6/2/96 
6/9/96 
6/16/96 

Ending OPENed 
4 
2 
2 
2 
9 
0 
2 
0 

CLOSED 
1 
3 
3 
1 
8 
0 
3 
0 

76 



6/23/96 
6/30/96 
7/7/96 
7/14/96 
7/21/96 
7/28/96 
8/4/96 
8/11/96 
8/18/96 
8/25/96 
9/1/96 
9/8/96 
9/15/96 
9/22/96 
9/29/96 
10/6/96 
10/10/96 

0 
0 
0 
3 
0 
0 
1 
4 
0 
2 
2 
0 
1 
20 
14 
2 
12 

0 
0 
0 
0 
1 
0 
1 
6 
0 
0 
7 
3 
2 
1 
0 
22 
18 

SCR Total OPEN Report  (week resolution, problems only) 
(Report covers 04/23/96 to 10/10/96) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/UI *GENT SCRs 
4/28/96 21 3 
5/5/96 20 3 
5/12/96 19 2 
5/19/96 20 2 
5/26/96 21 1 
6/2/96 21 1 
6/9/96 20 1 
6/16/96 20 1 
6/23/96 20 1 
6/30/96 20 1 
7/7/96 20 1 
7/14/96 23 1 
7/21/96 22 1 
7/28/96 22 1 
8/4/96 22 1 
8/11/96 20 3 
8/18/96 20 3 
8/25/96 22 4 
9/1/96 17 4 
9/8/96 14 2 
9/15/96 13 2 
9/22/96 32 18 
9/29/96 46 27 
10/6/96 26 12 
10/10/96 20 9 

Version 2.7.2 

SCR Metrics for Problem SCRs 

SCR Average Age Report  (week resolution, problems only) 
(Report covers 10/11/96 to 03/05/97) 

77 



Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
10/13/96 153 31 
10/20/96 257 93 
10/27/96 264 100 
11/03/96 271 107 
11/10/96 278 114 
11/17/96 217 89 
11/24/96 253 37 
12/01/96 260 44 
12/08/96 166 51 
12/15/96 173 58 
12/22/96 180 65 
12/29/96 187 72 
01/05/97 194 79 
01/12/97 302 86 
01/19/97 309 93 
01/26/97 316 100 
02/02/97 323 107 
02/09/97 330 114 
02/16/97 337 121 
02/23/97 344 128 
03/02/97 351 135 
3/5/97 354 138 

SCR OPEN Activity Report  ( week resolution, problems only ) 
(Report covers 10/11/96 to 03/05/97) 
Date: 11/17/97 

SCR Priorities 
URGENT 

0 

6 

• 0 

0 

0 

7 

2 

0 

0 

0 

0 

0 

0 

0 

Date Week Ending CRITI 

10/13/96 0 

10/20/96 0 

10/27/96 0 

11/03/96 0 

11/10/96 0 

11/17/96 0 

11/24/96 0 

12/01/96 0 

12/08/96 0 

12/15/96 0 

12/22/96 0 

12/29/96 0 

01/05/97 0 

01/12/97 0 

NORMAL LOW 

0 0 

0 0 

0 . 0 

0 0 

0 0 

5 0 

5 1 

0 0 

10 0 

0 0 

0 0 

0 0 

0 0 

0 0 

78 



01/19/97 

01/26/97 

02/02/97 

02/09/97 

02/16/97 

02/23/97 

03/02/97 

3/5/97 

0 

0 

0 

0 

0 

0 

0 

0 

SCR Open/Close Rate Report  (week resolution, problems only) 
(Report covers 10/11/96 to 03/05/97) 
Date: 11/17/97 

Date Week Ending OPENed CLOSED 
10/13/96 0 0 
10/20/96 6 14 
10/27/96 0 0 
11/3/96 0 0 
11/10/96 0 0 
11/17/96 12 9 
11/24/96 8 • 13 
12/1/96 0 ■ 0 

12/8/96 10 4 
12/15/96 1 0 
12/22/96 0 0 
12/29/96 0 0 
1/5/97 0 0 
1/12/97 1 9 
1/19/97 0 0 
1/26/97 0 0 
2/2/97 0 . 0 
2/9/97 0 0 
2/16/97 0 0 
2/23/97 0 0 
3/2/97 0 0 
3/5/97 0 0 

SCR Total OPEN Report  (week resolution, problems only) 
(Report covers 10/11/96 to 03/05/97) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
10/13/96 20 9 
10/20/96 12 3 
10/27/96 12 3 
11/3/96 12 3 
11/10/96 12 3 
11/17/96 15 3 
11/24/96 10 1 
12/1/96 10 1 
12/8/96 16 1 

79 



12/15/96 16 1 
12/22/96 16 1 
12/29/96 16 1 
1/5/97 16 1 
1/12/97 9 1 
1/19/97 9 1 
1/26/97 9 1 
2/2/97 9 1 
2/9/97 9 1 
2/16/97 9 1 
2/23/97 9 1 
3/2/97 9 1 
3/5/97 9 1 

Version 3.0 

SCR Metrics for Problem SCRs 

SCR Average Age Report  (week resolution, problems only) 
(Report covers 03/06/97 to 10/01/97) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
03/09/97 358 142 
03/16/97 365 149 
03/23/97 336 156 
03/30/97 343 163 
04/06/97 350 170 
04/13/97 357 177 
04/20/97 348 94 
04/27/97 355 101 
05/04/97 356 108 
05/11/97 363 115 
05/18/97 370 122 
05/25/97 377 129 
06/01/97 341 136 
06/08/97 348 143 
06/15/97 349 150 
06/22/97 419 247 
06/29/97 426 254 
07/06/97 550 0 
07/13/97 557 0 
07/20/97 463 5 
07/27/97 470 12 
08/03/97 569 19 
08/10/97 576 26 
08/17/97 583 33 
08/24/97 590 40 
08/31/97 597 47 
09/07/97 604 54 
09/14/97 611 61 
09/21/97 618 68 
09/28/97 625 75 
10/1/97 628 78 
SCR OPEN Activity Report  ( week resolution, problems only ) 
(Report covers 03/06/97 to 10/01/97) 
Date: 11/17/97 

80 



Date Week Ending 

03/09/97 

03/16/97 

03/23/97 ' 

03/30/97 

04/06/97 

04/13/97 

04/20/97 

04/27/97 

05/04/97 

05/11/97 

05/18/97 

05/25/97 

06/01/97 

06/08/97 

06/15/97 

06/22/97 

06/29/97 

07/06/97 

07/13/97 

07/20/97 

07/27/97 

08/03/97 

08/10/97 

08/17/97 

08/24/97 

08/31/97 

09/07/97 

09/14/97 

09/21/97 

SCR Priorit ies 
CRITICAL URGENT NORMAL LOW 

0 2 0 0 

0 0 0 0 

0 0 1 0 

0 0 0 0 

0 1 0 0 

0 0 0 0 

1 0 10 0 

0 0 0 0 

0 0 1 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 1. 0 

0 0 0 0 

0 0 1 0 

0 0 0 1 

0 0 0 0 

0 0 1 1 

0 0 0 0 

0 1 2 0 

0 0 0 0 

.0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

81 



09/28/97 0 0              0 0 

10/1/97 0 0              0 0 

SCR Open/Close Rate Report (wee! <.  resolution, problems only) 
(Report covers 03/06/97 to 10/01/97) 
Date: 11/17/97 

Date Week Ending OPENed CLOSED 
3/9/97 5 3 
3/16/97 0 0 
3/23/97 4 5 
3/30/97 0 0 
4/6/97 1 1 
4/13/97 0 0 
4/20/97 14 3 
4/27/97 0 0 
5/4/97 1 6 
5/11/97 0 0 
5/18/97 0 0 
5/25/97 0 0 
6/1/97 1 3 
6/8/97 0 0 
6/15/97 1 1 
6/22/97 1 4 
6/29/97 0 0 
7/6/97 2 9 
7/13/97 0 0 
7/20/97 3 2 
7/27/97 0 0 
8/3/97 0 1 
8/10/97 0 0 
8/17/97 0 0 
8/24/97 0 0 
8/31/97 0 0 
9/7/97 0 0 
9/14/97 0 0 
9/21/97 0 0 
9/28/97 0 0 
10/1/97 0 0 

SCR Total OPEN Report (wee k resolution , problems only) 
(Report covers 03/06/97 to 10/01/97) 
Date: 11/17/97 

Date Week Ending All SCRs OPENed CRITICAL/URGENT SCRs 
3/9/97 9 1 
3/16/97 9 1 
3/23/97 10 1 
3/30/97 10 1 
4/6/97 10 1 
4/13/97 10 1 
4/20/97 10 2 
4/27/97 10 2 
5/4/97 8 2 
5/11/97 8 2 
5/18/97 8 2 
5/25/97 8 

82 

2 



6/1/97 
6/8/97 
6/15/97 
6/22/97 
6/29/97 
7/6/97 
7/13/97 
7/20/97 
7/27/97 
8/3/97 
8/10/97 
8/17/97 
8/24/97 
8/31/97 
9/7/97 
9/14/97 
9/21/97 
9/28/97 
10/1/97 

83 



84 



APPENDIX G. VERSION DESCRIPTION DOCUMENT 

VERSION  DESCRIPTION  DOCUMENTS 
***************************************** 
2.6 
************************************************************* 

Version: 2.6 
Lockdown Date:    08-MAR-96  Actual:     18-MAR-96 
Release Date:     29-MAR-96  Actual:    22-APR-96 

Status key: 
1 - ill defined (unclear what is needed, or scope is to broad) 
2 - ready for detailed design meetings 
3 - ready for final design 
4 - ready to be implemented (minimal design work remaining, 

may denote relatively small code changes) 
5 - completed, ready for final testing 

Customers/Proj ects 

Highest priority: 
NSA 
John Schill 

NSS 
Mahen - Planning (pre-positioning) 
EADSIM 
JTF-ATD 

Lesser priority: NASA, JMCIS, IBM/Cray, Boeing, NIH, NCAR, Bob Lucas 

Requirements - implementation for March release: 

Status SCRs 

Highest priority 
5   - Generational scheduling algorithm 

754-C 

5   - Dynamic information (network/cpu/ memory, disk space, etc)  (ALL) 
includes the use of this information in schedulers??? 

64    612-C 

5   - Improved learning/Black hole problem (All) 
760-C 158-H 

5   - Complete Reimplementation of schedule monitor 
fix performance problems/scalability, make it replay like, 
add admin features??? 
761-C 766   376   635   491   72    73    314 

5   - Rogue/Long running jobs (Client querying)  (NSA) 
758-C 661-C 

4 - Linux port 
634 

5 - Intra-User Security 
only work involving limiting job control to owning client 
752-C 

85 



CORBA Interface (JTF) 
Resulting implementation is a CORBUS wrap which is not directly 
part of the release 
771 

Lesser priority 
5  - Easier DB configuration/manipulation/merging (ALL) 

cleanup existing utility scripts and bring into release/manuals 
764-C 

3  - Command line clients (sn-submit, sn-control, etc) 
mainly changes to runtime library and use of that library by sn- 

submit 
789-C 689-C 630   79    391-H 

5  - Persistence/survivability of service (NSA) 
only remove existing out of date recovery mechanism 
762-C 

2 - API Reimplementation 
only complete design 
765 

Special cases (optional or TBD) 
- Improvements to sn-replay 

384-R 616-R 618-R 619-R 766-R 

- MetaRMS (NSA, NSS)  • 
NONE 

- Planning (pre-positioning) (JTF, NASA) 
NONE 

- SmartNet-Commserver interaction 
you mentioned this a couple of times, Richard, but I still need 
clarification. 
NONE 

- Generic user "data" field in jobinfo struct (JTF, NSA) 
someone needs to convince me why we want to do this 
NONE 

Requirements - Research emphasis: 

Highest priority (hope to have some in Sept. release) 
- Multitasking (JTF, JMCIS, IBM/Cray) 
- Constraints Scheduling (Time, memory, latency, bandwidth) (JTF) 
- Co-dependency between processes (JTF-ATD) 
- Handling Interactive Jobs (ALL) 
- Reservations (jobs, alternate usage, resource maintenance times) (JTF, 
NSA) 
- Multi-resource scheduling (subprocesses, machine clusters, networks) 
(JTF) 
- Auto-Partitioning (subprocesses or machine clusters) 
- Multiple scheduling criteria (specifically user latency) (ALL) 
- API Reimplementation 

86 



- More complete scheduling choices matrix (better modularization of 
schedulers???) 

Lesser priority 
- Server cooperation 
- System security 
- Hard Priorities and overrides (NSA) 
- Process migration 
- DCE/RMS supported integration (NSA, NASA, NSS) 
- Automatic definition of non-DB defined jobs (JTF, Cray, IBM). 
- Master startup client 
- Better installation/setup procedures 
- Stable schedules and measurements (NASA) 
- Multiuser scheduling interleaving (JTF) 
- Rescheduling too often. 
- Global overrides are not set-able through the DB file. 

These next few (last, but not least on Mark's list) will automatically 
be addressed somewhat in this release.  I definitely want to take a peek 
at our current performance capabilities (size of matrix, number of 
clients).  However, none of them will be a primary focus of effort for 
this release.  Testing would be the exception.  If anyone had a plan for 
something that would significantly improve our testing process, it would 
really help our bug and manpower problems. 

- Improved Testing 
- Fewer Bugs 
- Performance issues 
- Usability 
- Improved Documentation 

All other GUI modifications would be limited to fixes dictated by the 
other requirements (listed above), minor bug fixes, and minor usability 
enhancements.  Most of these would be to the runner, maybe a few to. the 
editor, and probably none to the VHM monitor. 
************************************************************* 
2.7 
************************************************************* 

Version:    2.7 
Lockdown Date: .   03-SEP-96  Actual:     10-SEP-96 
Release Date:     01-OCT-96  Actual:     10-OCT-96 

Status key: 
1 - ill defined (unclear what is needed, or scope is to broad) 
2 - ready for detailed design meetings 
3 - ready for final design 
4 -. ready for implementation 
5 - ready for initial testing 
6 - completed, ready for final testing 

Customers/Projects 

BC2A  JTF   NSA   PCD   NASA  NSS 

Requirements - implementation for October release: 

Hrs 

1.  Finish initial SNAP implementation.  Complete the new      160 
logger, and integrate with SNAP. 

87 



Dep:    SCR: 53(a) 

2. API Reimplementation. 160 
Dep:    SCR: 7 65 

3. Scheduling around a fixed schedule.  Includes admin control 
120  6 

through SNAP. 
Dep:    SCR: 4 62 4 63 

4. Profiling and Optimization of server and schedulers.       80 
Dep:    SCR: 45(a) 

5. Reimplementation of runtime library into c++ 80 
Dep:    SCR: 630 886 791 

6. Implement user selectability of secondary subschedulers    80 
(for Meta and Generational schedulers) 
Dep:    SCR: 926 

7. Dynamic information - handle network latency information   32 
Dep:    SCR: 920 

Continuing research not completed in this release 

8. Handle multiple, job based, datahosts in 
scheduling 160 
Dep:    SCR: 776 777 

9. Workflow scheduling (scheduling on criteria other than     120 
Eta score) 
Dep:    SCR: 

10. MetaRMS (NSA, NSS) 160 
Dep:    SCR: 

11. Data staging for BC2A.  This involves setting up an RMS 
that keeps 160 
track of the disk space available on a machine and manages 
removal of old/low-priority files in favor of new/ 
high-priority ones. 
Dep:    SCR: 

Items not included in this release 

12. Implement automatic backup server capability 160 
Dep:    SCR: 92 9 

13. Remove FomMatrix from server.  This involves storing 
scheduling 80 
information (ETCs) in a job centric manner. 
Dep:    SCR: 928 

14. Integration with ISIS and HORUS DCEs (NSA, NASA) 120 
Dep:    SCR: 

88 



Topics of Research Interest 

- Multitasking (JTF, JMCIS, IBM/Cray) 
- Constraints Scheduling (Time, memory, latency, bandwidth) (JTF) 
- Co-dependency between processes (JTF-ATD) 
- Handling Interactive Jobs (ALL) 
- Reservations (jobs, alternate usage, resource maintenance times) (JTF, 
NSA) 
- Multi-resource scheduling (subprocesses, machine clusters, networks) 
(JTF) 
- Auto-Partitioning (subprocesses or machine clusters) 
- Multiple scheduling criteria (specifically user latency) (ALL) 
- More complete scheduling choices matrix (better modularization of 

schedulers???) 
- System security 
- Hard Priorities and overrides (NSA) 
- Process migration 
- Automatic definition of non-DB defined jobs (JTF, Cray, IBM). 
- Master startup client 
- Better installation/setup procedures 
- Stable schedules and measurements (NASA) 
- Multiuser scheduling interleaving (JTF) 
- Rescheduling too often. 
- Global overrides are not set-able through the DB file. 
- Develop Java api/client/server 

Continuing goals/issues 
- Improved Testing 
- Fewer Bugs 
- Performance issues 
- Usability 
- Improved Documentation 

89 



90 



LIST OF REFERENCES 

1. General Accounting Office Report GAO/NSIAD-93-198, Test and Evaluation: DOD 

Has Been Slow in Improving Testing of Software-Intensive Systems, September 1993. 

2. Dr. John Osmundson, Handouts and Notes from Naval Postgraduate School, 

Software Engineering and Management, IS4300, September 1996. 

3. Carnegie Mellon University, Software Engineering Institute, The Capability Maturity 

Model: Guidelines for Improving the Software Process, 1995. 

4. SSC-SD SEPO Office, Software Process Improvement Overview, 22 August 1996, 

SEPO SPI Homepage @ http://sepo.nosc.mil/spipage. 

5. Department of the Air Force, Software Technology Support Center, Guidelines for 

Successful Acquisition and Management of Software-Intensive Systems, June 1996, 

Volume 1. 

6. Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, Charles V. Weber, Capability 

Maturity Model for Software, Version 1.1, February 1993. 

7. Rubin, Howard, Editor, IT Metrics Strategies, May 1996, Volume II, No. 5. 

8. Dr. James Emery, The Case for an Adaptive Software Development Process, October 

1997. 

9. Dr. James Emery, Adopting a New Software Development Paradigm: A Strategic 

Imperative. 

10. George Yamamura, Gary B. Wigle, Boeing Defense & Space Group, SEI CMMLevel 

5: For the Right Reasons, Crosstalk, The Journal of Defense Software Engineering, 

August 1997. 

11. Kimsey M. Fowler Jr., Boeing Defense & Space Group, SEI CMM Level 5: A 

Practitioner's Perspective, Crosstalk, The Journal of Defense Software Engineering, 

September 1997. 

12. George Yamamura, Boeing Defense & Space Group, World Class Practices of 

Boeing's Space Transportation Systems Organization, The Software Technology 

Conference, April 1997. 

13. Harvard Business School, Microsoft Corporation: Office Business Unit, 9-691-033, 

May 31,1994. 

91 



14. SSC-SD SEPO Office, Draft ofSSC-SD Instruction for Software Engineering 

Process Policy, 1 November 1996. 

15. SmartNet Brochure, TD 2882. 

16. Thomas McGibbon, Kaman Sciences Corp., A Business Case for Software Process 

Improvement, A Data & Analysis Center for Software (DACS) State-of-the-Art 

Report, 30 September 1996. 

17. Judith G. Brodman and Donna L. Johnson, Return on Investment (ROI)from Software 

Process Improvement at Measured by US Industry, 1995. 

92 



BIBLIOGRAPHY 

Boehm, Barry W., Software Engineering Economics, 1981. 

Curtis, Bill, Building a Cost-Benefit Case for Software Process Improvement, TeraQuest 

Metrics, Inc, 1995. 

Emam, Khaled El, Software Process Newsletter, IEEE Computer Society TCSE, No. 7, 

Fall 1996. 

Emery, James C, Management Information Systems, The Critical Strategic Resource, 

Oxford University Press, 1987. 

Emery, James C, Cost/Benefit Analysis of Information Systems, The Society for 

Management Information Systems Workshop Report No. 1. 

Gilb, Tom, The Planguage Method, A Handbook for Advanced Practical Management 

and Engineering Methods for Leading-Edge Competitiveness and A Guide to Critical 

Thinking about Complex Ideas, Problems or Systems Project Language, Process 

Language, Planning Language, Version 0.3, September 14,1996. 

Herbsleb, James, Carleton, Anita, Rozum, James, Siegel, Jane, Zubrow, David, Benefits 

ofCMM-Based Software Process Improvement: Initial Results, Software Engineering 

Institute, August 1994 

Humphrey, Watts S., Managing the Software Process, August 1990. 

Pressman, Roger S., Software Engineering, A Practitioner's Approach. 

93 



Science Applications International Corporation (SAIC), Common Approach to Software 

Development and Maintenance, Version 3, September 11, 1996. 

SSC-SD SEPO Office, Software Process Improvement Representatives Introductory 

Training (SPIRIT) tool box materials provided by the SSC-SD Software Engineering 

Process Office (SEPO), 1997. 

94 



INITIAL DISTRIBUTION LIST 

No. of copies 

1. Defense Technical Information Center 2 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, VA 22060-6218 

2. Dudley Knox Library 2 
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943-5101 

3. Dr. James Emery 1 
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943-5101 

4. Dr. Dan Boger, Acting Chairman, CodeCS 1 
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943-5101 

5. Elizabeth Gramoy, Dl 3 2 
Space and Naval Warfare Systems Center, San Diego 
53560 Hull Street 
San Diego, CA 92152-5001 

6. Richard Freund, D42 1 
Space and Naval Warfare Systems Center, San Diego 
53560 Hull Street 
San Diego, CA 92152-5001 

7. Karen D. Prenger, D412 2 
Space and Naval Warfare Systems Center, San Diego 
53560 Hull Street 
San Diego, CA 92152-5001 

95 


